The Infinitesimal Invariance Criterion for Statistical Transformation Models

Linyu Peng（彭 林玉）
http：／／www．peng．mech．keio．ac．jp
Department of Mechanical Engineering
Keio University（慶應義塾大学）

CMCAA，Beijing，September 13th， 2020

慶應義塾
Keio University
Tokyo，Japan

Outline

A brief introduction to information geometry

Group actions and symmetries

Statistical transformation models

Infinitesimal invariance criterion for STMs

Summary

Statistical manifolds $\left(\mathcal{S}^{n}, g\right)$

- A statistical model:

$$
\mathcal{S}=\left\{p(x ; \theta) \mid x \in \Omega \subseteq \mathbb{R}^{m}, \quad \theta \in \Theta \subseteq \mathbb{R}^{n}\right\}
$$

Here, $p(x ; \theta)$ are probability density functions (pdfs).

Statistical manifolds $\left(\mathcal{S}^{n}, g\right)$

- A statistical model:

$$
\mathcal{S}=\left\{p(x ; \theta) \mid x \in \Omega \subseteq \mathbb{R}^{m}, \quad \theta \in \Theta \subseteq \mathbb{R}^{n}\right\}
$$

Here, $p(x ; \theta)$ are probability density functions (pdfs).

- The Kullback-Leibler (KL) divergence on \mathcal{S} (Kullback-Leibler, 1951):

$$
\begin{aligned}
D_{\mathrm{KL}}: \mathcal{S} \times \mathcal{S} & \rightarrow \mathbb{R} \\
\left(p_{1}, p_{2}\right) & \mapsto D_{\mathrm{KL}}\left(p_{1}, p_{2}\right):=\int_{\Omega} p\left(x ; \theta_{1}\right) \ln \frac{p\left(x ; \theta_{1}\right)}{p\left(x ; \theta_{2}\right)} \mathrm{d} x
\end{aligned}
$$

Statistical manifolds $\left(\mathcal{S}^{n}, g\right)$

- A statistical model:

$$
\mathcal{S}=\left\{p(x ; \theta) \mid x \in \Omega \subseteq \mathbb{R}^{m}, \quad \theta \in \Theta \subseteq \mathbb{R}^{n}\right\}
$$

Here, $p(x ; \theta)$ are probability density functions (pdfs).

- The Kullback-Leibler (KL) divergence on \mathcal{S} (Kullback-Leibler, 1951):

$$
\begin{aligned}
D_{\mathrm{KL}}: \mathcal{S} \times \mathcal{S} & \rightarrow \mathbb{R} \\
\left(p_{1}, p_{2}\right) & \mapsto D_{\mathrm{KL}}\left(p_{1}, p_{2}\right):=\int_{\Omega} p\left(x ; \theta_{1}\right) \ln \frac{p\left(x ; \theta_{1}\right)}{p\left(x ; \theta_{2}\right)} \mathrm{d} x
\end{aligned}
$$

- The Fisher information matrix g (Fisher, 1922) can be derived from

$$
D_{\mathrm{KL}}(p(x ; \theta), p(x ; \theta+\mathrm{d} \theta))=\frac{1}{2} g_{i j}(\theta) \mathrm{d} \theta^{i} \mathrm{~d} \theta^{j}+O\left((\mathrm{~d} \theta)^{3}\right)
$$

- Entries of the matrix:

$$
\begin{aligned}
g_{i j}(\theta) & =E\left[\partial_{i} \ln p \quad \partial_{j} \ln p\right] \\
& =\int_{\Omega} \partial_{i} \ln p(x ; \theta) \partial_{j} \ln p(x ; \theta) p(x ; \theta) \mathrm{d} x
\end{aligned}
$$

Note $\partial_{i}=\frac{\partial}{\partial \theta^{i}}$ and $i, j=1,2, \ldots, n$.

- Entries of the matrix:

$$
\begin{aligned}
g_{i j}(\theta) & =E\left[\partial_{i} \ln p \quad \partial_{j} \ln p\right] \\
& =\int_{\Omega} \partial_{i} \ln p(x ; \theta) \partial_{j} \ln p(x ; \theta) p(x ; \theta) \mathrm{d} x
\end{aligned}
$$

Note $\partial_{i}=\frac{\partial}{\partial \theta^{i}}$ and $i, j=1,2, \ldots, n$.

- The corresponding Riemannian metric (Rao, 1945):

$$
g\left(\partial_{i}, \partial_{j}\right):=g_{i j}(\theta)
$$

- Entries of the matrix:

$$
\begin{aligned}
g_{i j}(\theta) & =E\left[\partial_{i} \ln p \quad \partial_{j} \ln p\right] \\
& =\int_{\Omega} \partial_{i} \ln p(x ; \theta) \partial_{j} \ln p(x ; \theta) p(x ; \theta) \mathrm{d} x
\end{aligned}
$$

Note $\partial_{i}=\frac{\partial}{\partial \theta^{i}}$ and $i, j=1,2, \ldots, n$.

- The corresponding Riemannian metric (Rao, 1945):

$$
g\left(\partial_{i}, \partial_{j}\right):=g_{i j}(\theta)
$$

Definition. The n-dimensional Riemannian manifold $\left(\mathcal{S}^{n}, g\right)$ is called a statistical manifold.

Levi-Civita connection

The unique Levi-Civita connection $\nabla^{(0)}$ satisfies

- Torsion free:

$$
\nabla_{X}^{(0)} Y-\nabla_{Y}^{(0)} X=[X, Y], \quad \forall X, Y \in \mathfrak{X}(\mathcal{S})
$$

- Compatibility with the metric $g: \nabla^{(0)} g=0$, i.e.,

$$
Z g(X, Y)=g\left(\nabla_{Z}^{(0)} X, Y\right)+g\left(X, \nabla_{Z}^{(0)} Y\right), \quad \forall X, Y, Z \in \mathfrak{X}(\mathcal{S})
$$

Levi-Civita connection

The unique Levi-Civita connection $\nabla^{(0)}$ satisfies

- Torsion free:

$$
\nabla_{X}^{(0)} Y-\nabla_{Y}^{(0)} X=[X, Y], \quad \forall X, Y \in \mathfrak{X}(\mathcal{S})
$$

- Compatibility with the metric $g: \nabla^{(0)} g=0$, i.e.,

$$
Z g(X, Y)=g\left(\nabla_{Z}^{(0)} X, Y\right)+g\left(X, \nabla_{Z}^{(0)} Y\right), \quad \forall X, Y, Z \in \mathfrak{X}(\mathcal{S})
$$

Locally,

$$
g\left(\nabla_{\partial_{i}}^{(0)} \partial_{j}, \partial_{k}\right)=\Gamma_{i j, k}^{(0)},
$$

where

$$
\Gamma_{i j, k}^{(0)}=\frac{1}{2}\left(\partial_{i} g_{j k}+\partial_{j} g_{k i}-\partial_{k} g_{i j}\right)
$$

Dual affine connections

Some history of dual connections for statistical models:

- Chentsov, 1972 and before: Introduced a family of dual connections but only used the Riemannian structure (Originally in Russian, English translation published in 1982)
- Efron, 1975: Defined a curvature (independently from Chentsov) but did not realise it corresponds to the exponential connection
- Dawid, 1975: Showed the relation between Efron's curvature and the exponential connection, also suggested to define the mixture connection
- Amari, 1980, 1982: Defined a one-parameter family of affine connections, i.e., α-connections, that are equivalent to Chentsov's ones

Dual affine connections

A pair of affine connections ∇ and ∇^{*} are dual to each other if they satisfy

- Torsion free
- Duality condition:

$$
Z g(X, Y)=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z}^{*} Y\right), \quad \forall X, Y, Z \in \mathfrak{X}(\mathcal{S})
$$

Dual affine connections

A pair of affine connections ∇ and ∇^{*} are dual to each other if they satisfy

- Torsion free
- Duality condition:

$$
Z g(X, Y)=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z}^{*} Y\right), \quad \forall X, Y, Z \in \mathfrak{X}(\mathcal{S})
$$

Remark. 1. The Levi-Civita connection is

$$
\nabla^{(0)}=\frac{\nabla+\nabla^{*}}{2}
$$

2. For any statistical manifold \mathcal{S}, there exists a one-parameter family of connections $\nabla^{(\alpha)}(\alpha \in \mathbb{R})$ such that $\nabla^{(\alpha)}$ and $\nabla^{(-\alpha)}$ are dual.

Example: Gaussian distributions

- pdfs:

$$
p(x ; \theta)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}, \quad x \in \mathbb{R}, \theta=(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^{+}
$$

- Fisher information matrix:

$$
g(\theta)=\left(\begin{array}{cc}
\frac{1}{\sigma^{2}} & 0 \\
0 & \frac{1}{\sigma^{2}}
\end{array}\right)
$$

- Constant curvature:

$$
-\frac{1}{2}
$$

Example: Weibull distributions

- pdfs:

$$
p(x ; \theta)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \quad x \in \mathbb{R}^{+}, \theta=(\alpha, \beta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}
$$

Example: Weibull distributions

- pdfs:

$$
p(x ; \theta)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \quad x \in \mathbb{R}^{+}, \theta=(\alpha, \beta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}
$$

- Fisher information matrix:

$$
g(\theta)=\left(\begin{array}{cc}
\frac{\beta^{2}}{\alpha^{2}} & \frac{\gamma-1}{\alpha} \\
\frac{\gamma-1}{\alpha} & \frac{(\gamma-1)^{2}}{\beta^{2}}+\frac{\pi^{2}}{6 \beta^{2}}
\end{array}\right)
$$

The number γ is the Euler-Mascheroni constant, equaling

$$
\gamma=-\int_{0}^{+\infty} e^{-x} \ln x \mathrm{~d} x
$$

Example: Weibull distributions

- pdfs:

$$
p(x ; \theta)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \quad x \in \mathbb{R}^{+}, \theta=(\alpha, \beta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}
$$

- Fisher information matrix:

$$
g(\theta)=\left(\begin{array}{cc}
\frac{\beta^{2}}{\alpha^{2}} & \frac{\gamma-1}{\alpha} \\
\frac{\gamma-1}{\alpha} & \frac{(\gamma-1)^{2}}{\beta^{2}}+\frac{\pi^{2}}{6 \beta^{2}}
\end{array}\right)
$$

The number γ is the Euler-Mascheroni constant, equaling

$$
\gamma=-\int_{0}^{+\infty} e^{-x} \ln x \mathrm{~d} x
$$

- Constant curvature (Cao-Sun-Wang, 2008):

$$
-\frac{6}{\pi^{2}}
$$

Natural gradient descent

Definition. Consider extrema of a function $J(\theta)$ defined on ta statistical manifold (\mathcal{S}, g). The steepest descent direction is given by the natural gradient (Amari, 1997, 1998)

$$
-\operatorname{grad}_{N} J(\theta):=-\left(g_{i j}(\theta)\right)^{-1} \operatorname{grad} J(\theta)
$$

Natural gradient descent

Definition. Consider extrema of a function $J(\theta)$ defined on ta statistical manifold (\mathcal{S}, g). The steepest descent direction is given by the natural gradient (Amari, 1997, 1998)

$$
-\operatorname{grad}_{N} J(\theta):=-\left(g_{i j}(\theta)\right)^{-1} \operatorname{grad} J(\theta) .
$$

A natural gradient descent method can then be defined as a generalisation of Newton's gradient descent method on statistical manifolds:

$$
\theta_{k+1}=\theta_{k}-h \operatorname{grad}_{N} J\left(\theta_{k}\right) .
$$

Natural gradient descent

Definition. Consider extrema of a function $J(\theta)$ defined on ta statistical manifold (\mathcal{S}, g). The steepest descent direction is given by the natural gradient (Amari, 1997, 1998)

$$
-\operatorname{grad}_{N} J(\theta):=-\left(g_{i j}(\theta)\right)^{-1} \operatorname{grad} J(\theta) .
$$

A natural gradient descent method can then be defined as a generalisation of Newton's gradient descent method on statistical manifolds:

$$
\theta_{k+1}=\theta_{k}-h \operatorname{grad}_{N} J\left(\theta_{k}\right) .
$$

The difficulty lies in the computation of matrix inversion $\left(g_{i j}\left(\theta_{k}\right)\right)^{-1}$ for each k, especially when $\operatorname{dim} \mathcal{S}$ is big.

Group actions

A group of transformations (or a (left) group action) acting on a smooth manifold \mathcal{M} is given by a (local) Lie group G, and a smooth map $\mathcal{T}: G \times \mathcal{M} \rightarrow \mathcal{M}$ satisfying:

- $\mathcal{T}\left(\rho_{1}, \mathcal{T}\left(\rho_{2}, z\right)\right)=\mathcal{T}\left(\left(\rho_{1} \cdot \rho_{2}\right), z\right)$ and $\mathcal{T}(e, z)=z$.

Group actions

A group of transformations (or a (left) group action) acting on a smooth manifold \mathcal{M} is given by a (local) Lie group G, and a smooth map $\mathcal{T}: G \times \mathcal{M} \rightarrow \mathcal{M}$ satisfying:

- $\mathcal{T}\left(\rho_{1}, \mathcal{T}\left(\rho_{2}, z\right)\right)=\mathcal{T}\left(\left(\rho_{1} \cdot \rho_{2}\right), z\right)$ and $\mathcal{T}(e, z)=z$.

Remark. For any $\rho \in G$, we denote $\mathcal{T}_{\rho}: \mathcal{M} \rightarrow \mathcal{M}$ by

$$
\mathcal{T}_{\rho}(z)=\mathcal{T}(\rho, z)=\rho \circ z=\widetilde{z} .
$$

Infinitesimal generators

Locally, in a small neighbourhood of e, the group G can be parameterised by $\rho=\left(\rho^{1}, \rho^{2}, \ldots, \rho^{r}\right)$, where $r=\operatorname{dim} G$. The infinitesimal generators are defined as

$$
\mathbf{v}_{i}=\xi_{i}^{j}(z) \partial_{z^{j}},
$$

where

$$
\xi_{i}^{j}(z)=\left.\frac{\partial \widetilde{z}^{j}}{\partial \rho^{i}}\right|_{\rho=e} .
$$

Infinitesimal generators

Locally, in a small neighbourhood of e, the group G can be param-
 eterised by $\rho=\left(\rho^{1}, \rho^{2}, \ldots, \rho^{r}\right)$, where $r=\operatorname{dim} G$. The infinitesimal generators are defined as

$$
\mathbf{v}_{i}=\xi_{i}^{j}(z) \partial_{z^{j}}
$$

where

$$
\xi_{i}^{j}(z)=\left.\frac{\partial \widetilde{z}^{j}}{\partial \rho^{i}}\right|_{\rho=e}
$$

Remark. Group actions and infinitesimal generators are connected by a system of linear PDEs:

$$
\frac{\partial \widetilde{z}^{j}}{\partial \rho^{i}}=\xi_{i}^{j}(\widetilde{z})
$$

subject to initial conditions

$$
\left.\widetilde{z}\right|_{\rho=e}=z .
$$

Example

Consider the special orthogonal group $G=S O(2)$ acting on the plane \mathbb{R}^{2} (i.e., rotations):

$$
\binom{x}{y} \mapsto\binom{\tilde{x}}{\widetilde{y}}=\left(\begin{array}{cc}
\cos \varepsilon & -\sin \varepsilon \\
\sin \varepsilon & \cos \varepsilon
\end{array}\right)\binom{x}{y} .
$$

Example

Consider the special orthogonal group $G=S O(2)$ acting on the plane \mathbb{R}^{2} (i.e., rotations):

$$
\binom{x}{y} \mapsto\binom{\tilde{x}}{\widetilde{y}}=\left(\begin{array}{cc}
\cos \varepsilon & -\sin \varepsilon \\
\sin \varepsilon & \cos \varepsilon
\end{array}\right)\binom{x}{y} .
$$

The infinitesimal generator is

$$
\begin{aligned}
\mathbf{v} & =\left.\frac{\mathrm{d} \widetilde{x}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \partial_{x}+\left.\frac{\mathrm{d} \widetilde{y}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \partial_{y} \\
& =-y \partial_{x}+x \partial_{y},
\end{aligned}
$$

Invariance of functions

Definition. A smooth function $f(z)(z \in \mathcal{M})$ is called invariant w.r.t. a group G acting on \mathcal{M} if we have

$$
f(z)=f(\rho \circ z), \quad \forall \rho \in G
$$

For instance, $f(x, y)=x^{2}+y^{2}$ is invariant w.r.t. rotations in \mathbb{R}^{2}.

Invariance of functions

Definition. A smooth function $f(z)(z \in \mathcal{M})$ is called invariant w.r.t. a group G acting on \mathcal{M} if we have

$$
f(z)=f(\rho \circ z), \quad \forall \rho \in G
$$

For instance, $f(x, y)=x^{2}+y^{2}$ is invariant w.r.t. rotations in \mathbb{R}^{2}.

Theorem. A smooth function $f(z)(z \in \mathcal{M})$ is invariant w.r.t. a group G acting on \mathcal{M} if and only if for each infinitesimal generator \mathbf{v}, the following vanishment holds

$$
\mathbf{v}(f) \equiv 0
$$

Invariance of integrals

Definition. Let $f(z)$ be a smooth function in \mathcal{M}. An integral $\int_{\Omega} f(z) \mathrm{d} z$, defined in an open, connected subspace $\Omega \subseteq \mathcal{M}$ with smooth boundary, is called invariant w.r.t. a group G acting on Ω if we have

$$
\int_{\Omega_{0}} f(z) \mathrm{d} z=\int_{\rho \circ \Omega_{0}} f(\rho \circ z) \mathrm{d}(\rho \circ z), \quad \forall \rho \in G
$$

for any subdomain Ω_{0} such that $\bar{\Omega}_{0} \subseteq \Omega$, or alternatively,

$$
f(z) \mathrm{d} z=f(\rho \circ z) \mathrm{d}(\rho \circ z), \quad \forall \rho \in G .
$$

Invariance of integrals

Definition. Let $f(z)$ be a smooth function in \mathcal{M}. An integral $\int_{\Omega} f(z) \mathrm{d} z$, defined in an open, connected subspace $\Omega \subseteq \mathcal{M}$ with smooth boundary, is called invariant w.r.t. a group G acting on Ω if we have

$$
\int_{\Omega_{0}} f(z) \mathrm{d} z=\int_{\rho \circ \Omega_{0}} f(\rho \circ z) \mathrm{d}(\rho \circ z), \quad \forall \rho \in G
$$

for any subdomain Ω_{0} such that $\bar{\Omega}_{0} \subseteq \Omega$, or alternatively,

$$
f(z) \mathrm{d} z=f(\rho \circ z) \mathrm{d}(\rho \circ z), \quad \forall \rho \in G .
$$

Theorem. Under the same assumptions of the definition above, an integral $\int_{\Omega} f(z) \mathrm{d} z$ is invariant if and only if the following identity holds for each infinitesimal generator $\mathbf{v}=\xi^{i}(z) \partial_{z i}$:

$$
\mathbf{v}(f)+f \operatorname{Div} \xi \equiv 0, \text { where } \operatorname{Div} \xi:=D_{z^{i}} \xi^{i} .
$$

Group actions on measurable/Borel spaces

- Let $(\mathcal{X}, \mathcal{B})$ be a measurable space.

Group actions on measurable/Borel spaces

- Let $(\mathcal{X}, \mathcal{B})$ be a measurable space.
- Let ν be an arbitrary measure on $(\mathcal{X}, \mathcal{B})$. For a function $f \in L^{1}(\nu)$, we have

$$
\nu(f)=\int_{\mathcal{X}} f(x) \nu(\mathrm{d} x) .
$$

Group actions on measurable/Borel spaces

- Let $(\mathcal{X}, \mathcal{B})$ be a measurable space.
- Let ν be an arbitrary measure on $(\mathcal{X}, \mathcal{B})$. For a function $f \in L^{1}(\nu)$, we have

$$
\nu(f)=\int_{\mathcal{X}} f(x) \nu(\mathrm{d} x) .
$$

- Consider a group action

$$
\begin{aligned}
\mathcal{T}: G \times \mathcal{X} & \rightarrow \mathcal{X} \\
(\rho, x) & \mapsto \widetilde{x}=\rho \circ x,
\end{aligned}
$$

which induces transformations on a measure ν :

$$
\rho \circ \nu(f):=\nu(f \circ \rho), \quad f \in L^{1}(\nu) .
$$

Group actions on measurable/Borel spaces

- Let $(\mathcal{X}, \mathcal{B})$ be a measurable space.
- Let ν be an arbitrary measure on $(\mathcal{X}, \mathcal{B})$. For a function $f \in L^{1}(\nu)$, we have

$$
\nu(f)=\int_{\mathcal{X}} f(x) \nu(\mathrm{d} x)
$$

- Consider a group action

$$
\begin{aligned}
\mathcal{T}: G \times \mathcal{X} & \rightarrow \mathcal{X} \\
(\rho, x) & \mapsto \widetilde{x}=\rho \circ x,
\end{aligned}
$$

which induces transformations on a measure ν :

$$
\rho \circ \nu(f):=\nu(f \circ \rho), \quad f \in L^{1}(\nu) .
$$

Definition. A measure ν is said to be invariant w.r.t. the group action \mathcal{T} if

$$
\rho \circ \nu=\nu, \quad \forall \rho \in G .
$$

Probability measure

- Let X be a random variable in the measurable space $(\mathcal{X}, \mathcal{B})$ corresponding to a probability measure P on (\mathcal{X}, \mathcal{B}).

Probability measure

- Let X be a random variable in the measurable space $(\mathcal{X}, \mathcal{B})$ corresponding to a probability measure P on $(\mathcal{X}, \mathcal{B})$.
- The density of X w.r.t. a reference measure μ on $(\mathcal{X}, \mathcal{B})$ is derived using the Radon-Nikodym derivative:

$$
p=\frac{\mathrm{d} P}{\mathrm{~d} \mu} \text {, or equivalently, } \mathrm{d} P=p \mathrm{~d} \mu .
$$

Probability measure

- Let X be a random variable in the measurable space $(\mathcal{X}, \mathcal{B})$ corresponding to a probability measure P on $(\mathcal{X}, \mathcal{B})$.
- The density of X w.r.t. a reference measure μ on $(\mathcal{X}, \mathcal{B})$ is derived using the Radon-Nikodym derivative:

$$
p=\frac{\mathrm{d} P}{\mathrm{~d} \mu} \text {, or equivalently, } \mathrm{d} P=p \mathrm{~d} \mu \text {. }
$$

- The probability measure P is invariant w.r.t. a group action \mathcal{T} if $\rho \circ P=P$, that, locally, is written as

$$
P(\mathrm{~d} x)=P(\mathrm{~d} \widetilde{x}) \text {, i.e., } p(x) \mu(\mathrm{d} x)=p(\widetilde{x}) \mu(\mathrm{d} \widetilde{x}) .
$$

Probability measure

- Let X be a random variable in the measurable space $(\mathcal{X}, \mathcal{B})$ corresponding to a probability measure P on $(\mathcal{X}, \mathcal{B})$.
- The density of X w.r.t. a reference measure μ on $(\mathcal{X}, \mathcal{B})$ is derived using the Radon-Nikodym derivative:

$$
p=\frac{\mathrm{d} P}{\mathrm{~d} \mu} \text {, or equivalently, } \mathrm{d} P=p \mathrm{~d} \mu \text {. }
$$

- The probability measure P is invariant w.r.t. a group action \mathcal{T} if $\rho \circ P=P$, that, locally, is written as

$$
P(\mathrm{~d} x)=P(\mathrm{~d} \widetilde{x}) \text {, i.e., } p(x) \mu(\mathrm{d} x)=p(\widetilde{x}) \mu(\mathrm{d} \widetilde{x}) .
$$

- Further assume μ is the Lebesgue measure, then the invariance becomes

$$
p(x) \mathrm{d} x=p(\widetilde{x}) \mathrm{d} \widetilde{x}
$$

Statistical transformation models

Definition. Let $p(x ; \theta)$ be the pdfs where $x \in \Omega \subseteq \mathbb{R}^{m}$ and $\theta \in \Theta$ with Θ an n-dimensional Lie group. The statistical model $\mathcal{S}=\{p(x ; \theta\}$ is called a transformation model if there exists a group action $\mathcal{T}: \Theta \times \Omega \rightarrow \Omega$ such that the probability measure is invariant in the sense that

$$
p(x ; \theta) \mathrm{d} x=p(\widetilde{x} ; \rho \cdot \theta) \mathrm{d} \widetilde{x}, \quad \forall \rho \in \Theta
$$

where $\widetilde{x}=\rho \circ x$.

Statistical transformation models

Definition. Let $p(x ; \theta)$ be the pdfs where $x \in \Omega \subseteq \mathbb{R}^{m}$ and $\theta \in \Theta$ with Θ an n-dimensional Lie group. The statistical model $\mathcal{S}=\{p(x ; \theta\}$ is called a transformation model if there exists a group action $\mathcal{T}: \Theta \times \Omega \rightarrow \Omega$ such that the probability measure is invariant in the sense that

$$
p(x ; \theta) \mathrm{d} x=p(\widetilde{x} ; \rho \cdot \theta) \mathrm{d} \widetilde{x}, \quad \forall \rho \in \Theta
$$

where $\widetilde{x}=\rho \circ x$.
Remark. This is in fact a special transformation model according to Barndorff-Nielsen-Blæsild-Eriksen, 1989.

Example. The Gaussian distributions form a transformation model.

Example. The Gaussian distributions form a transformation model.

- Lie group structure of $\Theta=\left\{\rho=(\mu, \sigma) \mid \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}\right\}$ (non-Abelian):

$$
\left(\mu_{1}, \sigma_{1}\right) \cdot\left(\mu_{2}, \sigma_{2}\right)=\left(\mu_{1}+\mu_{2} \sigma_{1}, \sigma_{1} \sigma_{2}\right)
$$

- Identity:

$$
e=(0,1)
$$

- Inversion:

$$
\rho^{-1}=\left(-\frac{\mu}{\sigma}, \frac{1}{\sigma}\right)
$$

Example. The Gaussian distributions form a transformation model.

- Lie group structure of $\Theta=\left\{\rho=(\mu, \sigma) \mid \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}\right\}$ (non-Abelian):

$$
\left(\mu_{1}, \sigma_{1}\right) \cdot\left(\mu_{2}, \sigma_{2}\right)=\left(\mu_{1}+\mu_{2} \sigma_{1}, \sigma_{1} \sigma_{2}\right)
$$

- Identity:

$$
e=(0,1)
$$

- Inversion:

$$
\rho^{-1}=\left(-\frac{\mu}{\sigma}, \frac{1}{\sigma}\right)
$$

- The group action:

$$
\rho \circ x=\mu+\sigma x
$$

Theorem. (Amari-Nagaoka, 1993) Components of the Fisher information matrix g satisfy

$$
g_{i j}(\theta)=B_{i}^{l}(\theta) g_{l m}(e) B_{j}^{m}(\theta)
$$

where

$$
B_{i}^{l}(\theta):=\left.\frac{\partial}{\partial \rho^{i}}\right|_{\rho=\theta}\left(\theta^{-1} \cdot \rho\right)^{l} .
$$

In matrix form, it reads

$$
g(\theta)=B(\theta) g(e) B^{T}(\theta)
$$

where $B=\left(B_{i}^{l}\right)$ with i the row index and l the column index.
[A detailed proof is available in Sun et al., 2016. Examples available in Barndorff-Nielsen-Blæsild-Eriksen, 1989; Amari-Nagaoka, 2000; Sun et al., 2016.]

Theorem. (Amari-Nagaoka, 1993) Components of the Fisher information matrix g satisfy

$$
g_{i j}(\theta)=B_{i}^{l}(\theta) g_{l m}(e) B_{j}^{m}(\theta)
$$

where

$$
B_{i}^{l}(\theta):=\left.\frac{\partial}{\partial \rho^{i}}\right|_{\rho=\theta}\left(\theta^{-1} \cdot \rho\right)^{l} .
$$

In matrix form, it reads

$$
g(\theta)=B(\theta) g(e) B^{T}(\theta)
$$

where $B=\left(B_{i}^{l}\right)$ with i the row index and l the column index.
[A detailed proof is available in Sun et al., 2016. Examples available in Barndorff-Nielsen-Blæsild-Eriksen, 1989; Amari-Nagaoka, 2000; Sun et al., 2016.]

Corollary. Every 2-dimensional statistical transformation model has constant curvature.
[Some references on statistical manifolds of constant curvature: Cao-Sun-Wang, 2008; Rylov, 2016; Peng-Zhang, 2019.]

A modified natural gradient

If the transformation structure for a statistical model is known, then inversion of the Fisher information matrix becomes

$$
g^{-1}(\theta)=B^{-T}(\theta) g^{-1}(e) B^{-1}(\theta)
$$

and the natural gradient becomes

$$
-\operatorname{grad}_{N} J(\theta)=-B^{-T}(\theta) g^{-1}(e) B^{-1}(\theta) \operatorname{grad} J(\theta)
$$

Consequently, in the natural gradient descent method

$$
\theta_{k+1}=\theta_{k}-h \operatorname{grad}_{N} J\left(\theta_{k}\right),
$$

what left is to compute inversion of $g(e)$ and inversions of matrices $B\left(\theta_{k}\right)$ that are totally determined by the Lie group structure.

A modified natural gradient

If the transformation structure for a statistical model is known, then inversion of the Fisher information matrix becomes

$$
g^{-1}(\theta)=B^{-T}(\theta) g^{-1}(e) B^{-1}(\theta)
$$

and the natural gradient becomes

$$
-\operatorname{grad}_{N} J(\theta)=-B^{-T}(\theta) g^{-1}(e) B^{-1}(\theta) \operatorname{grad} J(\theta) .
$$

Consequently, in the natural gradient descent method

$$
\theta_{k+1}=\theta_{k}-h \operatorname{grad}_{N} J\left(\theta_{k}\right),
$$

what left is to compute inversion of $g(e)$ and inversions of matrices $B\left(\theta_{k}\right)$ that are totally determined by the Lie group structure.

The Problem. Historically, people have mainly been focused on the existence of measures for a given Lie group action. In practice, it would be more important to determine the transformation structure for a given distribution.

Theorem. Assume $p(x ; \theta)$ are pdfs for a statistical model $\mathcal{S}=\{p(x ; \theta)\}$ with $x \in \Omega \subset \mathbb{R}^{m}$. The parameters θ are elements of an n-dimensional Lie group Θ, that are supposed to act on Ω, i.e., $\mathcal{T}: \Theta \times \Omega \rightarrow \Omega$. Then, \mathcal{S} is a transformation model, namely, invariance of the probability measure, if and only if the infinitesimal invariance criterion is satisfied, namely.

$$
\mathbf{v}_{i}(p(x ; \theta))+p(x ; \theta) \operatorname{Div}_{x} \xi_{i} \equiv 0
$$

holds for each infinitesimal generator

$$
\mathbf{v}_{i}=\xi_{i}^{j}(x) \frac{\partial}{\partial x^{j}}+\eta_{i}^{k}(\theta) \frac{\partial}{\partial \theta^{k}}, \quad i=1,2, \ldots, n
$$

where $(\rho \in \Theta, j=1,2, \ldots, m, k=1,2, \ldots, n)$

$$
\xi_{i}^{j}(x)=\left.\frac{\partial}{\partial \rho^{i}}\right|_{\rho=e}(\rho \circ x)^{j}, \quad \eta_{i}^{k}(\theta)=\left.\frac{\partial}{\partial \rho^{i}}\right|_{\rho=e}(\rho \cdot \theta)^{k} .
$$

Theorem. Assume $p(x ; \theta)$ are pdfs for a statistical model $\mathcal{S}=\{p(x ; \theta)\}$ with $x \in \Omega \subset \mathbb{R}^{m}$. The parameters θ are elements of an n-dimensional Lie group Θ, that are supposed to act on Ω, i.e., $\mathcal{T}: \Theta \times \Omega \rightarrow \Omega$. Then, \mathcal{S} is a transformation model, namely, invariance of the probability measure, if and only if the infinitesimal invariance criterion is satisfied, namely.

$$
\mathbf{v}_{i}(p(x ; \theta))+p(x ; \theta) \operatorname{Div}_{x} \xi_{i} \equiv 0
$$

holds for each infinitesimal generator

$$
\mathbf{v}_{i}=\xi_{i}^{j}(x) \frac{\partial}{\partial x^{j}}+\eta_{i}^{k}(\theta) \frac{\partial}{\partial \theta^{k}}, \quad i=1,2, \ldots, n
$$

where ($\rho \in \Theta, j=1,2, \ldots, m, k=1,2, \ldots, n$)

$$
\xi_{i}^{j}(x)=\left.\frac{\partial}{\partial \rho^{i}}\right|_{\rho=e}(\rho \circ x)^{j}, \quad \eta_{i}^{k}(\theta)=\left.\frac{\partial}{\partial \rho^{i}}\right|_{\rho=e}(\rho \cdot \theta)^{k} .
$$

LP [2020], Infinitesimal invariance criterion for statistical transformation models, draft.

Example. (Weibull distributions.)

$$
p(x ; \theta)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \quad x \in \mathbb{R}^{+}, \theta=(\alpha, \beta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}
$$

Example. (Weibull distributions.)
$p(x ; \theta)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \quad x \in \mathbb{R}^{+}, \theta=(\alpha, \beta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$

- Lie group structure (non-Abelian):

$$
\left(\alpha_{1}, \beta_{1}\right) \cdot\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1} \alpha_{2}^{1 / \beta_{1}}, \beta_{1} \beta_{2}\right)
$$

- Identity:

$$
e=(1,1)
$$

- Inversion:

$$
\rho^{-1}=\left(\frac{1}{\alpha^{\beta}}, \frac{1}{\beta}\right), \quad \rho=(\alpha, \beta)
$$

Example. (Weibull distributions.)
$p(x ; \theta)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \quad x \in \mathbb{R}^{+}, \theta=(\alpha, \beta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$

- Lie group structure (non-Abelian):

$$
\left(\alpha_{1}, \beta_{1}\right) \cdot\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1} \alpha_{2}^{1 / \beta_{1}}, \beta_{1} \beta_{2}\right)
$$

- Identity:

$$
e=(1,1)
$$

- Inversion:

$$
\rho^{-1}=\left(\frac{1}{\alpha^{\beta}}, \frac{1}{\beta}\right), \quad \rho=(\alpha, \beta)
$$

- Group action $\rho \circ x$: Do not know.

How to use the IIC

- First of all, we can compute the η matrix from the group operation:

$$
\eta_{1}^{1}=\alpha, \quad \eta_{2}^{1}=-\alpha \ln \alpha, \quad \eta_{1}^{2}=0, \quad \eta_{2}^{2}=\beta
$$

How to use the IIC

- First of all, we can compute the η matrix from the group operation:

$$
\eta_{1}^{1}=\alpha, \quad \eta_{2}^{1}=-\alpha \ln \alpha, \quad \eta_{1}^{2}=0, \quad \eta_{2}^{2}=\beta
$$

- Solving the infinitesimal invariance criterion:

$$
\xi_{1}=x, \quad \xi_{2}=-x \ln x,
$$

namely

$$
\mathbf{v}_{1}=x \partial_{x}+\alpha \partial_{\alpha}, \quad \mathbf{v}_{2}=-x \ln x \partial_{x}-\alpha \ln \alpha \partial_{\alpha}+\beta \partial_{\beta} .
$$

How to use the IIC

- First of all, we can compute the η matrix from the group operation:

$$
\eta_{1}^{1}=\alpha, \quad \eta_{2}^{1}=-\alpha \ln \alpha, \quad \eta_{1}^{2}=0, \quad \eta_{2}^{2}=\beta
$$

- Solving the infinitesimal invariance criterion:

$$
\xi_{1}=x, \quad \xi_{2}=-x \ln x,
$$

namely

$$
\mathbf{v}_{1}=x \partial_{x}+\alpha \partial_{\alpha}, \quad \mathbf{v}_{2}=-x \ln x \partial_{x}-\alpha \ln \alpha \partial_{\alpha}+\beta \partial_{\beta} .
$$

- The group action generated by \mathbf{v}_{1} and \mathbf{v}_{2} (using Lie series):

$$
\rho \circ x \sim \exp \left([\alpha x-\beta x \ln x] \partial_{x}\right)(x), \quad \rho=(\alpha, \beta)
$$

How to use the IIC

- First of all, we can compute the η matrix from the group operation:

$$
\eta_{1}^{1}=\alpha, \quad \eta_{2}^{1}=-\alpha \ln \alpha, \quad \eta_{1}^{2}=0, \quad \eta_{2}^{2}=\beta
$$

- Solving the infinitesimal invariance criterion:

$$
\xi_{1}=x, \quad \xi_{2}=-x \ln x,
$$

namely

$$
\mathbf{v}_{1}=x \partial_{x}+\alpha \partial_{\alpha}, \quad \mathbf{v}_{2}=-x \ln x \partial_{x}-\alpha \ln \alpha \partial_{\alpha}+\beta \partial_{\beta} .
$$

- The group action generated by \mathbf{v}_{1} and \mathbf{v}_{2} (using Lie series):

$$
\rho \circ x \sim \exp \left([\alpha x-\beta x \ln x] \partial_{x}\right)(x), \quad \rho=(\alpha, \beta)
$$

Result: The model of Weibull distributions is a transformation model. It has constant curvature since its dimension is 2 .

- Recall that the Fisher information metric is

$$
g(\theta)=\left(\begin{array}{cc}
\frac{\beta^{2}}{\alpha^{2}} & \frac{\gamma-1}{\alpha} \\
\frac{\gamma-1}{\alpha} & \frac{(\gamma-1)^{2}}{\beta^{2}}+\frac{\pi^{2}}{6 \beta^{2}}
\end{array}\right), \quad g(e)=\left(\begin{array}{cc}
1 & \gamma-1 \\
\gamma-1 & (\gamma-1)^{2}+\frac{\pi^{2}}{6}
\end{array}\right)
$$

- Recall that the Fisher information metric is

$$
g(\theta)=\left(\begin{array}{cc}
\frac{\beta^{2}}{\alpha^{2}} & \frac{\gamma-1}{\alpha} \\
\frac{\gamma-1}{\alpha} & \frac{(\gamma-1)^{2}}{\beta^{2}}+\frac{\pi^{2}}{6 \beta^{2}}
\end{array}\right), \quad g(e)=\left(\begin{array}{cc}
1 & \gamma-1 \\
\gamma-1 & (\gamma-1)^{2}+\frac{\pi^{2}}{6}
\end{array}\right)
$$

- The matrix $B(\theta)$ turns out to be diagonal

$$
B(\theta)=\left(\begin{array}{cc}
\frac{\beta}{\alpha} & 0 \\
0 & \frac{1}{\beta}
\end{array}\right)
$$

such that $g(\theta)=B(\theta) g(e) B^{T}(\theta)$

- Recall that the Fisher information metric is

$$
g(\theta)=\left(\begin{array}{cc}
\frac{\beta^{2}}{\alpha^{2}} & \frac{\gamma-1}{\alpha} \\
\frac{\gamma-1}{\alpha} & \frac{(\gamma-1)^{2}}{\beta^{2}}+\frac{\pi^{2}}{6 \beta^{2}}
\end{array}\right), \quad g(e)=\left(\begin{array}{cc}
1 & \gamma-1 \\
\gamma-1 & (\gamma-1)^{2}+\frac{\pi^{2}}{6}
\end{array}\right)
$$

- The matrix $B(\theta)$ turns out to be diagonal

$$
B(\theta)=\left(\begin{array}{cc}
\frac{\beta}{\alpha} & 0 \\
0 & \frac{1}{\beta}
\end{array}\right)
$$

such that $g(\theta)=B(\theta) g(e) B^{T}(\theta)$

- Matrix inversion (e,g., in the natural gradient descent method) can be replaced by

$$
g^{-1}(\theta)=B^{-T}(\theta) g^{-1}(e) B^{-1}(\theta)
$$

Summary

- A brief introduction to information geometry, group actions and transformation models
- The main result: An infinitesimal invariance criterion for determining a transformation model

Summary

- A brief introduction to information geometry, group actions and transformation models
- The main result: An infinitesimal invariance criterion for determining a transformation model
- Future work
- Other concrete examples
- Applications to practical problems: To simplify the natural gradient descent method, in particular, simplify the computations of matrix inversion
- etc.

Thanks very much for your attention.

Return!

