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Statistical manifolds (Sn, g)

I A statistical model:

S =
{

p(x; θ) | x ∈ Ω ⊆ Rm, θ ∈ Θ ⊆ Rn
}

Here, p(x; θ) are probability density functions (pdfs).

I The Kullback–Leibler (KL) divergence on S (Kullback–Leibler,
1951):

DKL : S × S → R

(p1, p2) 7→ DKL(p1, p2) :=

∫
Ω

p(x; θ1) ln p(x; θ1)
p(x; θ2)

dx

I The Fisher information matrix g (Fisher, 1922) can be derived from

DKL (p(x; θ), p(x; θ + dθ)) = 1

2
gij(θ)dθi dθj + O

(
(dθ)3

)
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I Entries of the matrix:

gij(θ) = E [∂i ln p ∂j ln p]

=

∫
Ω

∂i ln p(x; θ)∂j ln p(x; θ)p(x; θ)dx

Note ∂i =
∂
∂θi and i, j = 1, 2, . . . ,n.

I The corresponding Riemannian metric (Rao, 1945):

g(∂i, ∂j) := gij(θ)

Definition. The n-dimensional Riemannian manifold (Sn, g) is called a
statistical manifold.
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Levi-Civita connection

The unique Levi-Civita connection ∇(0) satisfies
I Torsion free:

∇(0)
X Y −∇(0)

Y X = [X ,Y ], ∀X ,Y ∈ X(S)

I Compatibility with the metric g: ∇(0)g = 0, i.e.,

Zg(X ,Y ) = g(∇(0)
Z X ,Y ) + g(X ,∇(0)

Z Y ), ∀X ,Y ,Z ∈ X(S)

Locally,
g
(
∇(0)

∂i
∂j, ∂k

)
= Γ

(0)
ij,k,

where
Γ
(0)
ij,k =

1

2
(∂igjk + ∂jgki − ∂kgij)
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Dual affine connections

Some history of dual connections for statistical models:
I Chentsov, 1972 and before: Introduced a family of dual connections

but only used the Riemannian structure (Originally in Russian,
English translation published in 1982)

I Efron, 1975: Defined a curvature (independently from Chentsov)
but did not realise it corresponds to the exponential connection

I Dawid, 1975: Showed the relation between Efron’s curvature and
the exponential connection, also suggested to define the mixture
connection

I Amari, 1980, 1982: Defined a one-parameter family of affine
connections, i.e., α-connections, that are equivalent to Chentsov’s
ones

6 / 27



Dual affine connections

A pair of affine connections ∇ and ∇∗ are dual to each other if they
satisfy

I Torsion free
I Duality condition:

Zg(X ,Y ) = g(∇ZX ,Y ) + g(X ,∇∗
ZY ), ∀X ,Y ,Z ∈ X(S)

Remark. 1. The Levi-Civita connection is

∇(0) =
∇+∇∗

2
.

2. For any statistical manifold S, there exists a one-parameter family of
connections ∇(α) (α ∈ R) such that ∇(α) and ∇(−α) are dual.
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Example: Gaussian distributions

I pdfs:

p(x; θ) = 1√
2πσ

exp
{
− (x − µ)2

2σ2

}
, x ∈ R, θ = (µ, σ) ∈ R× R+

I Fisher information matrix:

g(θ) =

(
1
σ2 0

0 1
σ2

)

I Constant curvature:
−1

2
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Example: Weibull distributions
I pdfs:

p(x; θ) = β

α

( x
α

)β−1

exp
{
−
( x
α

)β}
, x ∈ R+, θ = (α, β) ∈ R+×R+

I Fisher information matrix:

g(θ) =

 β2

α2
γ−1
α

γ−1
α

(γ−1)2

β2 + π2

6β2


The number γ is the Euler–Mascheroni constant, equaling

γ = −
∫ +∞

0

e−x ln x dx

I Constant curvature (Cao–Sun–Wang, 2008):

− 6

π2
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Natural gradient descent

Definition. Consider extrema of a function J (θ) defined on ta statistical
manifold (S, g). The steepest descent direction is given by the natural
gradient (Amari, 1997, 1998)

− gradN J (θ) := −(gij(θ))
−1 grad J (θ).

A natural gradient descent method can then be defined as a
generalisation of Newton’s gradient descent method on statistical
manifolds:

θk+1 = θk − h gradN J (θk).

The difficulty lies in the computation of matrix inversion (gij(θk))
−1 for

each k, especially when dimS is big.
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Group actions

A group of transformations (or a (left) group action) acting on a
smooth manifold M is given by a (local) Lie group G, and a smooth
map T : G ×M → M satisfying:

I T (ρ1, T (ρ2, z)) = T ((ρ1 · ρ2), z) and T (e, z) = z.

Remark. For any ρ ∈ G, we denote Tρ : M → M by

Tρ(z) = T (ρ, z) = ρ ◦ z = z̃.

11 / 27



Group actions

A group of transformations (or a (left) group action) acting on a
smooth manifold M is given by a (local) Lie group G, and a smooth
map T : G ×M → M satisfying:

I T (ρ1, T (ρ2, z)) = T ((ρ1 · ρ2), z) and T (e, z) = z.

Remark. For any ρ ∈ G, we denote Tρ : M → M by

Tρ(z) = T (ρ, z) = ρ ◦ z = z̃.

11 / 27



Infinitesimal generators
Locally, in a small neighbourhood
of e, the group G can be param-
eterised by ρ = (ρ1, ρ2, . . . , ρr),
where r = dim G. The infinites-
imal generators are defined as

vi = ξj
i (z)∂zj ,

where

ξj
i (z) =

∂z̃j

∂ρi

∣∣∣
ρ=e

.

Remark. Group actions and infinitesimal generators are connected by a
system of linear PDEs:

∂z̃j

∂ρi = ξj
i (z̃)

subject to initial conditions

z̃
∣∣∣
ρ=e

= z.
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Example

Consider the special orthogonal group G = SO(2) acting on the plane R2

(i.e., rotations):(
x
y

)
7→
(

x̃
ỹ

)
=

(
cos ε − sin ε
sin ε cos ε

)(
x
y

)
.

The infinitesimal generator is

v =
dx̃
dε

∣∣∣
ε=0

∂x +
dỹ
dε

∣∣∣
ε=0

∂y

= −y∂x + x∂y,
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Invariance of functions

Definition. A smooth function f (z) (z ∈ M) is called invariant w.r.t. a
group G acting on M if we have

f (z) = f (ρ ◦ z), ∀ρ ∈ G.

For instance, f (x, y) = x2 + y2 is invariant w.r.t. rotations in R2.

Theorem. A smooth function f (z) (z ∈ M) is invariant w.r.t. a group
G acting on M if and only if for each infinitesimal generator v, the
following vanishment holds

v(f ) ≡ 0.
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Invariance of integrals
Definition. Let f (z) be a smooth function in M. An integral

∫
Ω

f (z)dz,
defined in an open, connected subspace Ω ⊆ M with smooth boundary,
is called invariant w.r.t. a group G acting on Ω if we have∫

Ω0

f (z)dz =

∫
ρ◦Ω0

f (ρ ◦ z)d(ρ ◦ z), ∀ρ ∈ G

for any subdomain Ω0 such that Ω0 ⊆ Ω, or alternatively,

f (z)dz = f (ρ ◦ z)d(ρ ◦ z), ∀ρ ∈ G.

Theorem. Under the same assumptions of the definition above, an
integral

∫
Ω

f (z)dz is invariant if and only if the following identity holds
for each infinitesimal generator v = ξi(z)∂zi :

v(f ) + f Div ξ ≡ 0, where Div ξ := Dziξi.
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Group actions on measurable/Borel spaces
I Let (X ,B) be a measurable space.

I Let ν be an arbitrary measure on (X ,B). For a function f ∈ L1(ν),
we have

ν(f ) =
∫
X

f (x)ν(dx).

I Consider a group action

T : G ×X → X
(ρ, x) 7→ x̃ = ρ ◦ x,

which induces transformations on a measure ν:

ρ ◦ ν(f ) := ν(f ◦ ρ), f ∈ L1(ν).

Definition. A measure ν is said to be invariant w.r.t. the group action T
if

ρ ◦ ν = ν, ∀ρ ∈ G.
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Probability measure
I Let X be a random variable in the measurable space (X ,B)

corresponding to a probability measure P on (X ,B).

I The density of X w.r.t. a reference measure µ on (X ,B) is derived
using the Radon–Nikodym derivative:

p =
dP
dµ

, or equivalently, dP = p dµ.

I The probability measure P is invariant w.r.t. a group action T if
ρ ◦ P = P, that, locally, is written as

P(dx) = P (dx̃) , i.e., p(x)µ(dx) = p(x̃)µ(dx̃).

I Further assume µ is the Lebesgue measure, then the invariance
becomes

p(x)dx = p(x̃)dx̃
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Statistical transformation models

Definition. Let p(x; θ) be the pdfs where x ∈ Ω ⊆ Rm and θ ∈ Θ with Θ
an n-dimensional Lie group. The statistical model S = {p(x; θ} is called
a transformation model if there exists a group action T : Θ× Ω → Ω
such that the probability measure is invariant in the sense that

p(x; θ)dx = p(x̃; ρ · θ)dx̃, ∀ρ ∈ Θ,

where x̃ = ρ ◦ x.

Remark. This is in fact a special transformation model according to
Barndorff-Nielsen–Blæsild–Eriksen, 1989.
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Example. The Gaussian distributions form a transformation model.

I Lie group structure of Θ = {ρ = (µ, σ) | µ ∈ R, σ ∈ R+}
(non-Abelian):

(µ1, σ1) · (µ2, σ2) = (µ1 + µ2σ1, σ1σ2) .

I Identity:
e = (0, 1)

I Inversion:
ρ−1 =

(
−µ

σ
,
1

σ

)
I The group action:

ρ ◦ x = µ+ σx.
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Theorem. (Amari–Nagaoka, 1993) Components of the Fisher
information matrix g satisfy

gij(θ) = Bl
i(θ)glm(e)Bm

j (θ),

where
Bl

i(θ) :=
∂

∂ρi

∣∣∣
ρ=θ

(
θ−1 · ρ

)l
.

In matrix form, it reads

g(θ) = B(θ)g(e)BT(θ),

where B = (Bl
i) with i the row index and l the column index.

[A detailed proof is available in Sun et al., 2016. Examples available in
Barndorff-Nielsen–Blæsild–Eriksen, 1989; Amari–Nagaoka, 2000; Sun et
al., 2016.]

Corollary. Every 2-dimensional statistical transformation model has
constant curvature.
[Some references on statistical manifolds of constant curvature:
Cao–Sun–Wang, 2008; Rylov, 2016; Peng–Zhang, 2019.]
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Theorem. (Amari–Nagaoka, 1993) Components of the Fisher
information matrix g satisfy

gij(θ) = Bl
i(θ)glm(e)Bm

j (θ),

where
Bl

i(θ) :=
∂

∂ρi

∣∣∣
ρ=θ

(
θ−1 · ρ

)l
.

In matrix form, it reads

g(θ) = B(θ)g(e)BT(θ),

where B = (Bl
i) with i the row index and l the column index.
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A modified natural gradient
If the transformation structure for a statistical model is known, then
inversion of the Fisher information matrix becomes

g−1(θ) = B−T(θ)g−1(e)B−1(θ)

and the natural gradient becomes

− gradN J (θ) = −B−T(θ)g−1(e)B−1(θ) grad J (θ).

Consequently, in the natural gradient descent method

θk+1 = θk − h gradN J (θk),

what left is to compute inversion of g(e) and inversions of matrices
B(θk) that are totally determined by the Lie group structure.

The Problem. Historically, people have mainly been focused on the
existence of measures for a given Lie group action. In practice, it would
be more important to determine the transformation structure for a given
distribution.
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Theorem. Assume p(x; θ) are pdfs for a statistical model S = {p(x; θ)}
with x ∈ Ω ⊂ Rm. The parameters θ are elements of an n-dimensional
Lie group Θ, that are supposed to act on Ω, i.e., T : Θ× Ω → Ω. Then,
S is a transformation model, namely, invariance of the probability
measure, if and only if the infinitesimal invariance criterion is satisfied,
namely.

vi(p(x; θ)) + p(x; θ)Divx ξi ≡ 0

holds for each infinitesimal generator

vi = ξj
i (x)

∂

∂xj + ηk
i (θ)

∂

∂θk , i = 1, 2, . . . ,n,

where (ρ ∈ Θ, j = 1, 2, . . . ,m, k = 1, 2, . . . ,n)

ξj
i (x) =

∂

∂ρi

∣∣∣
ρ=e

(ρ ◦ x)j, ηk
i (θ) =

∂

∂ρi

∣∣∣
ρ=e

(ρ · θ)k.

LP [2020], Infinitesimal invariance criterion for statistical transformation models, draft.
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Example. (Weibull distributions.)

p(x; θ) = β

α

( x
α

)β−1

exp
{
−
( x
α

)β}
, x ∈ R+, θ = (α, β) ∈ R+ × R+

I Lie group structure (non-Abelian):

(α1, β1) · (α2, β2) =
(
α1α

1/β1

2 , β1β2

)

I Identity:
e = (1, 1)

I Inversion:
ρ−1 =

(
1

αβ
,
1

β

)
, ρ = (α, β)

I Group action ρ ◦ x: Do not know.
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How to use the IIC
I First of all, we can compute the η matrix from the group operation:

η11 = α, η12 = −α lnα, η21 = 0, η22 = β

I Solving the infinitesimal invariance criterion:

ξ1 = x, ξ2 = −x ln x,

namely

v1 = x∂x + α∂α, v2 = −x ln x∂x − α lnα∂α + β∂β .

I The group action generated by v1 and v2 (using Lie series):

ρ ◦ x ∼ exp
([

αx − βx ln x
]
∂x

)
(x), ρ = (α, β)

Result: The model of Weibull distributions is a transformation model. It
has constant curvature since its dimension is 2.
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I Recall that the Fisher information metric is

g(θ) =

 β2

α2
γ−1
α

γ−1
α

(γ−1)2

β2 + π2

6β2

 , g(e) =

(
1 γ − 1

γ − 1 (γ − 1)
2
+ π2

6

)

I The matrix B(θ) turns out to be diagonal

B(θ) =

(
β
α 0

0 1
β

)

such that g(θ) = B(θ)g(e)BT(θ)

I Matrix inversion (e,g., in the natural gradient descent method) can
be replaced by

g−1(θ) = B−T(θ)g−1(e)B−1(θ)
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Summary

I A brief introduction to information geometry, group actions and
transformation models

I The main result: An infinitesimal invariance criterion for
determining a transformation model

I Future work
I Other concrete examples
I Applications to practical problems: To simplify the natural

gradient descent method, in particular, simplify the
computations of matrix inversion

I etc.
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Thanks very much for your attention.
Return!
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