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equations (DDEs)): Decio Levi & Pavel Winternitz (1990s-), Ravil
[. Yamilov (1990s-), ...

Challenge for DDEs: the noncommutativity (that we will see shortly)

> [Levi-Winternitz—Yamilov, 2010]: Lie point symmetries of
differential-difference equations, Journal of Physics A: Mathematical
and Theoretical 43, 292002.

> [P, 2017]: Symmetries, Conservation Laws, and Noether's Theorem
for Differential-Difference Equations, Studies in Applied
Mathematics 139, 457-502.

» [P-Hydon, 2021]: Transformations, symmetries and Noether
theorems for differential-difference equations, preprint.



Motivations

Why is the study of semi-discrete equations important?

» Semi-discretization of PDEs and semi-continuum of PAEs

» They naturally arise as models of mechanical or physical systems,
e.g., Toda lattice, Volterra equations, interconnected mechanical

systems
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What is a symmetry (or symmetry group)?
Planar or 3D objects: A local diffeomorphism of transformation which
preserves the structure and the shape.

> Rotation of an equilateral triangle by 2k7 /3 for any integer k € Z:
a discrete symmetry
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» Consider the unit circle 22 + y? = 1. The transformation T is

FE:<I>H<5>:<C.OS5 Slng)(:t)’ Iy = id.
Yy Y sine cose Y

The infinitesimal generator with respect to I'; is

v = 4 ’ia—i—i
~ \dele=o v de

—05) Oy = —y0z + 20,



Symmetries of DEs

For the unit circle 22 + 32 = 1, we notice that after transformation I'. we
have



Symmetries of DEs
For the unit circle 22 + 32 = 1, we notice that after transformation I'. we

have
P4+yP= (" +y) =1L

Example. Consider the Riccati equation

d +1 2
dy _y+1 .y
dz T 3

and the transformation

Fez(x,y)H<§— A yJ— >

T 1l—ez’ 1—cx




Symmetries of DEs

For the unit circle 22 + 32 = 1, we notice that after transformation I'. we
have

P+P= (" +9) =1
Example. Consider the Riccati equation

d +1 2
dy _y+1 .y
dz T 3

and the transformation

Fez(x,y)H<§— A yJ— >

1—ex’

» Direct calculation shows that
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Prolongation of transformations and the LSC
For . : (z,y) — (z,7), the chain rule gives

_,_dj _D,j
& D7

To determine symmetries of 4’ — w(z, y) = 0 using the linearized
symmetry condition (LSC):

1. Taylor expansion of ¥ — w(z,y) = 0:
Y — w(z, y)+e(ds + (by — &)y — &% — Ew, — dw,)+0(%) = 0,
where
T=z+eb(z,y)+ 0E), §=y+ep(z,y)+ O
2. Using the infinitesimal generator v = {0, + ¢0,:
prv(y — w(z,y)) = 0 whenever y = w(z, y),

where
prv = v+ (Du(¢ —Ey') +Ey") Oy + -+



In both cases: prolongation of transformations is essential.

> For a transformation I'. : (z,y) — (Z(e, z, v), Y(e, 2, y)) s.t.
T’y = id, prolong the transform to derivatives
’?‘J'l _ @ _ ng ~1 __ Dz/?j/

dz  D,z’ Dz’



In both cases: prolongation of transformations is essential.
> For a transformation I'. : (z,y) — (Z(e, z, v), Y(e, 2, y)) s.t.
T’y = id, prolong the transform to derivatives
’?‘J'l _ @ o DI? ~1 Dm/?jl

dz  D,z’ D,t’

» The infinitesimal generator of I'c is v = £0, + ¢0y where

d ~ d ~
= — z, = — .
¢ de le=0 ¢ de le=o”
Its prolongation is naturally prv = v + ¢18y/ + ¢>2ay,, + .- where
d d
1 _ ~ 2 _ ~
¢ = de lezo?” ¢ de le=0




In both cases: prolongation of transformations is essential.
> For a transformation I'. : (z,y) — (Z(e, z, v), Y(e, 2, y)) s.t.
T’y = id, prolong the transform to derivatives
’?‘J'l _ @ _ Dyy ~1 D,y

iz Dz Y T D

» The infinitesimal generator of I'c is v = £0, + ¢0y where

d ~ d ~
= — z, = — .
¢ de le=0 ¢ de le=o”
Its prolongation is naturally prv = v + ¢18y/ + ¢>2ay,, + .- where
d d
1 _ ~ 2 _ ~
¢ = de lezo?” ¢ de le=0

> The general prolongation formula is equivalent to an evolutionary
representative

pI'Vngz—F Qay+ (DIQ)OU/ +a Q(ﬂ?, Y, yl) :¢_§yl'
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Symmetries of DDEs

> For simplicity, let n € Z and z € R be the independent variables
and let u € R be the 1-dimensional dependent variable.

» Shorthand notations:

u=u(z,n), uj=u(z,ntj), v = Dyu(z,n), uj = Dyu(z,n+j), ...

» Noncommutativity [P, 2017]: how to prolong a transformation
T.: (z,n,u) = (2(e, z,n, u), n,ule, z, n,u));
namely, how to calculate, for instance

u; = u(e,z,n+ 1,u) or u(e,z,n+ 1,u1)?
uy = 7 (shift first or differentiate first?)



Example. Consider the following local transformations

IT=z+eu, u=u

> Then we have (S : n — n+ 1: forward shift)

- D.u Uy,
Di= 22 = ,
zt D,z 14+ cu,
Su,
S(D-u) = —2 —
(D) 1+ eSu,’

and
Su = Su=u(z,n+1),

. Dy(Su)  Su,
Dr(S5u) = D,z 1+4eu,

> Apparently S(Dzu) # Dz(Su); which one is u}?



(1) An analytic approach

Remark. The discrete variable n should not be treated as a parameter
although it is discrete and invariant (n = n).



(1) An analytic approach

Remark. The discrete variable n should not be treated as a parameter
although it is discrete and invariant (n = n).

Example continued. Consider the following local transformations
T=z+eu, u=u

> (z,n,u) <(S,D=D,) and (2,7,u) <(S,D = D;)
Certainly DS =SD

> The calculation of 4} for u = u(z, n):

= S(Du(% — e, 7))
=S (u'(z,n) - (1 -t (,7)))
=/ (T —cu,n+1)-(1—e'(Z,n+1))

~,  u(z—eu,n+1)
14 (T—cu,n+1)




(2) The geometric meaning

» The differential structure.

» Fix n, the jet bundle structure for each slice 7, = R x {n} x R:
J®(Tn) = (u, v’ u”,. )
» The total jet space is

T®(T) 2 Z x J=(T)



(2) The geometric meaning

» The differential structure.

» Fix n, the jet bundle structure for each slice 7, = R x {n} x R:
J®(Tn) = (u, v’ u”,. )
» The total jet space is
J(T)XZ x J=(T,)

> The difference structure [Mansfield-Rojo-Echeburda—Hydon—-P,
2019].

» The total space 7 = R x Z x R is preserved by all translations
Te: T =T, Tp:(z,nu) — (z,n+k u)

» Prolongation space over n, denoted by P(7,,), is obtained by
pulling back the value of w at each 7,4 by using T}:

u, = Ty (ul7,, )



» The DD structure.
» Extend the translations T}, to the total jet space J>=(T):

Ty 2 J(T) — J=(T)
(:L’,n,...,u(j),...)r—>(:r,n+k,...,u(j),...)

» Pulling back values of jets over n + k to n gives the space
P(J*(T,)). The total prolongation space is

P(J®(T)) = Z x P(J*(To))



» The DD structure.
» Extend the translations T}, to the total jet space J>=(T):

Ty 2 J(T) — J=(T)
(:L’,n,...,u(j),...)r—>(:r,n+k,...,u(j),...)

» Pulling back values of jets over n + k to n gives the space
P(J*(T,)). The total prolongation space is

PJ®(T)) 2 Z x P(J*®(T,))
Remark. Let f be a function on P(J>°(T)), locally expressed as
fo=f(z,mn,..., ul(j), ce)e
The pull back of f,1r = f(z,n+k, ..., ul(j) ...) using T}, gives
T% frtk :f(:c,n—i—k,...,ul(fk,...),
which is defined as the shift of f;,, i.e.,

SFf = T} frs



Regular transformations

Definition. Transformations v = £0, + ¢0,, satisfying S¢ = £, meaning
& = &(x), are called regular/intrinsic.



Regular transformations

Definition. Transformations v = £0, + ¢0,, satisfying S¢ = £, meaning
& = &(x), are called regular/intrinsic.

Theorem. [P—Hydon, 2021] A one-parameter local Lie group of
transformations

Le:T—>T

preserves the geometric structure of the total prolongation space
P(J°°(T)) if and only if it is a group of regular transformations.



Prolongation of vector fields

Theorem. [P-Hydon, 2021] Let v = £(z, n, u)0; + ¢(x, n, u)d,, be the
infinitesimal generator of a local Lie group of transformations

e (z,n,u) — (T, n,u),

where I'g = id and

d - d ~

5 = & E:Ox’ ¢

= — 7.
de le=0

Its prolongation to higher jets are given by the evolutionary representative
prv =D+ Q0y + (DQ)Iw + (SQ)0u, + (DSQ)Dyr + -+

where Q(z,n,u,u') = ¢ — &u' is the corresponding characteristic.



Prolongation of vector fields

Theorem. [P-Hydon, 2021] Let v = £(z, n, u)0; + ¢(x, n, u)d,, be the
infinitesimal generator of a local Lie group of transformations

e (z,n,u) — (T, n,u),

where I'g = id and

d - d ~

g = & E:Ox’ ¢

= — 7.
de le=0

Its prolongation to higher jets are given by the evolutionary representative
prv =¢&D + QO + (DQ)0w + (SQ)0u, + (DSQ)Dy; + -+
where Q(z,n,u,u') = ¢ — &u' is the corresponding characteristic.

Remark. Symmetries of a DDE F = 0 can then be computed through
the linearized symmetry condition (equivalent to the Taylor expansion
approach):

prv(F) = 0 whenever F = 0.
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The Toda lattice

u” = exp(u_1 — u) —exp(u — uy)

» All of its Lie point symmetries are

20y + 210y, 0p, 10y, Oy

» Compared with [Levi-Winternitz, 1991]:
Iﬁz + 2n8u7 f(n)d,,, Iaua au

where f is arbitrary

Remark. f(n)0, (f # const.) is not a symmetry of the Toda lattice.



Partitioned DDEs

Example. The simple DDE
/ Uz
U = —
u

admits symmetries (using the linearized symmetry condition or Taylor
expansion)

Vi =0z, voa=(=1)"0;, v3=(=1)"(20;+ udy),
vy = 20, + udy, V5= ols) Uy, Ve = (—1)”2L%Ju8u,

where |-] denotes the floor function, e.g., | | meaning the greatest
integer less than or equal to n/2.



Partitioned DDEs

Example. The simple DDE

U2
==
u

admits symmetries (using the linearized symmetry condition or Taylor
expansion)

Vi =0z, voa=(=1)"0;, v3=(=1)"(20;+ udy),
vy = 20, + udy, V5= ols) Uy, Ve = (—1)”2L%Ju8u,

where |-] denotes the floor function, e.g., | | meaning the greatest
integer less than or equal to n/2.

Remark. A DDE can admit non-regular symmetries only when it is a
partitioned equation of the form

F(z,n, (u, . ), (g, e, )y (Uake, Uy - .n), .. ) = 0,

where the integer is K > 2 (or K < —2 for a backward DDE).



Group-invariant solutions/Similarity reduction: Toda
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Group-invariant solutions/Similarity reduction: Toda

u” = exp(u_1 — u) —exp(u — uy)

> Recall its symmetries:

vy = 20, + 2n0,, Vo =20, V3=1x0,, Vi=0,

» vi + Cyvy: The invariants are n and —Inz.

U
2n+Cp

u(z,n) = 2n+ Co)lnz — > In (K + (Co+ Dk+ C1) + Cy
k=0

. . 2
» vy 4+ Cgvs: The invariants are n and u — C‘)TZ

w(z, n) = %gﬂ =Y In(=Cok+ Cy) + C



Group-invariant solutions/Similarity reduction: Volterra

The Volterra equation
v = u(ug —u_1)

> All (Lie point) symmetries:

Vi =0z Vo =—20;+ ud,.



Group-invariant solutions/Similarity reduction

The Volterra equation
v = u(ug —u_1)
> All (Lie point) symmetries:

Vi =0z Vo =—20;+ ud,.

> Invariants of v = Cyvy + vo are n and (z — Cp)u:

. Ci + Cg(*l)n —-n
wen) ===y

where Cy, Cp, Cy are all arbitrary constants.

- Volterra



DD variational calculus
Theorem. A DD variational problem

N
/
Z/L(m,mu,ul,u,...)dx,
n=0"%

with 2 open and connected, is invariant with respect to the vector field
v = £0; + ¢, if and only if there exist functions P* and P"™ such that
the Lagrangian satisfies the criterion of variational invariance:

prv(L) + L(D¢) = DP® + (S —id) P™.



DD variational calculus
Theorem. A DD variational problem

N

/
Z/L(m,mu,ul,u,...)dx,
n=0"%

with 2 open and connected, is invariant with respect to the vector field
v = £0; + ¢, if and only if there exist functions P* and P"™ such that
the Lagrangian satisfies the criterion of variational invariance:

prv(L) + L(D¢) = DP® + (S —id) P

> A DD Lagrangian L(z,n, u, uy, v, ...)
» DD Euler-Lagrange equation: E(L) = 0 with DD Euler operator

g l @) _ picl
E:= Z S~ 80), w = D'S"u

> Conservation law: DP* 4 (S —id)P™ = QE(L) where @ is called a
characteristic



Noether’'s Theorem for DDEs

Noether’s Theorem. There is a one-to-one correspondence between
symmetry characteristics of a variational problem with Lagrangian L and
characteristics of conservation laws of the corresponding Euler-Lagrange
equations.

prv(L) + L(DE) = DP® + (S —id)P™

where prv =D + Q0, + (DQ)0w + - -
=

DA” + (S — id)A™ = QE(L)



Noether’'s Theorem for DDEs

Noether’s Theorem. There is a one-to-one correspondence between
symmetry characteristics of a variational problem with Lagrangian L and
characteristics of conservation laws of the corresponding Euler-Lagrange
equations.

prv(L) + L(DE) = DP® + (S —id)P™

where prv =D + Q0, + (DQ)0w + - -
=

DA” + (S — id)A™ = QE(L)

Remark. All results can be generalised to higher-order symmetries:

Lie point symmetries Q = ¢(x, n, u) — &(z, n, u)u’
=

higher-order symmetries Q(z, n, [u])

tlu] = (u, w1, v, ...) is a shorthand for u and finitely many of its shifts
and derivatives.



Volterra equation «' = u(u; — u_y)

> By a change of variables
w=exp(vy — v1),
the Volterra equation becomes the Euler-Lagrange equation of

L=uv_1v +exp(vy — v_1).
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Volterra equation «' = u(u; — u_y)

> By a change of variables
w=exp(vy — v1),
the Volterra equation becomes the Euler-Lagrange equation of

L=uv_1v +exp(vy — v_1).

> Variational symmetries v = (C; 4+ (—1)"C5) 9, < conservation

laws
D(Inu) + (S—id) (—u—u_q1) =

0
D((—=1)"Inu) + (S—id) (=)™ (u—u_1)) = 0.

Remark. A general inverse theory is not yet available.



Noether's Second Theorem

Noether's Second Theorem. A DD variational problem admits
symmetries whose characteristic Q(z, n, [u; f]) depends on R independent
arbitrary functions

(FH (@, ), (2, n), - [ (2, m))

and their derivatives and shifts if and only if there exist DD operators D
(not all zero) yielding R independent DD relations among the
Euler—Lagrange equations:

DE,(L)=0, r=1,2,...,R



Gauge-symmetry preserving semi-discretisations: An
example

Interaction of a scalar particle of mass m and charge e with an
electromagnetic field:

» Space-time coordinated by (z° = ¢, 2!, 2%, 23) (2° = n in the DD
case)

» Dependent variables:

» scalar and complex-valued : wavefunction
> real-valued A*: electromagnetic four-potential

> Metric n = diag(—1,1,1,1)
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The continuous system:

> The Lagrangian:

L= iFIwFW + (Vuw)(vlﬂ/))* + m%/n,b*

where
F;w = A;L,u - Au,ua vp, = Dp, + iEA/L

» Euler-Lagrange equations:
E,(L)=0, Ey-(L)=0, Eau(L)=0
» Gauge-symmetries:
P — exp(—ieX), AF — AP+t A,

where the function \(z°, 2!, 22, 23) is arbitrary and real-valued.

» Differential relation of Euler—Lagrange equations:

— iei/)Ew(L) -+ iew*E¢* (L) — D/L (UV”EAV (L)) =0



Fully discrete counterpart: [Christiansen—-Halvorsen, 2011] (see also
[Hydon—Mansfield, 2011])



Fully discrete counterpart: [Christiansen—-Halvorsen, 2011] (see also
[Hydon—Mansfield, 2011])

A DD counterpart: time ¢ is discretized with time step h.

» The DD Lagrangian:

L= iF/wFW + (V/ﬂ/))(vuw)* + m2¢1/}*

S—id

where by denoting the forward difference operator A = 255,

Fp,y = _Fu,uu VMa v,
FO,LL:AA,u*D,uA(h M#O,
Ful/ = Au,v - Au,p,a H 7é Oa v 7é 0

and
Vo= At 1- exp(h— iehA0)7

V=D, +ied,, pu#0.




» DD Euler-Lagrange equations:

Ey(L) =0, Eu(L)=0, Exu(L)=0

> Gauge-symmetries:

3

s exp(—ied), A% AP—AN  AM A“+Z AL, (p#0)
v=1

where the function \(n, 71, 2%, 23) is again arbitrary and real-valued.

» Differential-difference relation of Euler-Lagrange equations:

—ieYBy (L) e By« (L)~ AT (E 0 (L Z D, (n""Ea»(L)) =0

p,v=1

where AT is adjoint to A:



Summary

» The general prolongation formulation for symmetries of DDEs
is proved analytically, that allows us to compute symmetries
systematically.

» Continuous symmetries can be used to construct
group-invariant solutions of DDEs.

> Noether's two theorems are extended to DD variational
problems.
[1] Finite-dimensional variational symmetries and conservation
laws
[2] Infinite-dimensional variational symmetries and differential
relations of (under-determined) Euler-Lagrange equations
[1.5] An intermediate theorem (infinite-dimensional variational
symmetries that are subject to constraints)



Thanks a lot for your attention.
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