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Symmetries of DDEs: a brief review

I Finite difference equations: S. Maeda (1980s), Vladimir Dorodnitsyn
(1990s–), Peter Hydon & Elizabeth Mansfield (2000s–), ...

I Semi-discrete equations (also known as differential-difference
equations (DDEs)): Decio Levi & Pavel Winternitz (1990s–), Ravil
I. Yamilov (1990s–), ...

Challenge for DDEs: the noncommutativity (that we will see shortly)
I [Levi–Winternitz–Yamilov, 2010]: Lie point symmetries of

differential-difference equations, Journal of Physics A: Mathematical
and Theoretical 43, 292002.

I [P, 2017]: Symmetries, Conservation Laws, and Noether’s Theorem
for Differential-Difference Equations, Studies in Applied
Mathematics 139, 457–502.

I [P–Hydon, 2021]: Transformations, symmetries and Noether
theorems for differential-difference equations, preprint.
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Motivations

Why is the study of semi-discrete equations important?
I Semi-discretization of PDEs and semi-continuum of P∆Es
I They naturally arise as models of mechanical or physical systems,

e.g., Toda lattice, Volterra equations, interconnected mechanical
systems
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What is a symmetry (or symmetry group)?
Planar or 3D objects: A local diffeomorphism of transformation which
preserves the structure and the shape.

I Rotation of an equilateral triangle by 2kπ/3 for any integer k ∈ Z:
a discrete symmetry

I Consider the unit circle x2 + y2 = 1. The transformation Γε is

Γε :

(
x
y

)
7→

(
x̃
ỹ

)
=

(
cos ε − sin ε
sin ε cos ε

)(
x
y

)
, Γ0 = id .

The infinitesimal generator with respect to Γε is

v =

(
d
dε

∣∣∣
ε=0

x̃
)
∂x +

(
d
dε

∣∣∣
ε=0

ỹ
)
∂y = −y∂x + x∂y.
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Symmetries of DEs
For the unit circle x2 + y2 = 1, we notice that after transformation Γε we
have

x̃2 + ỹ2= (x2 + y2) = 1.

Example. Consider the Riccati equation

dy
dx

=
y + 1

x
+

y2

x3

and the transformation

Γε : (x, y) 7→
(

x̃ =
x

1− εx
, ỹ =

y
1− εx

)
.

I Direct calculation shows that

ỹ′ =
ỹ + 1

x̃
+

ỹ2

x̃3
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Prolongation of transformations and the LSC
For Γε : (x, y) 7→ (x̃, ỹ), the chain rule gives

ỹ′ =
dỹ
dx̃

=
Dx ỹ
Dx x̃

, ...

To determine symmetries of y′ − w(x, y) = 0 using the linearized
symmetry condition (LSC):

1. Taylor expansion of ỹ′ − w(x̃, ỹ) = 0:

y′ − w(x, y)+ε(φx + (φy − ξx)y′ − ξyy′2 − ξwx − φwy)+O(ε2) = 0,

where

x̃ = x + εξ(x, y) + O(ε2), ỹ = y + εφ(x, y) + O(ε2).

2. Using the infinitesimal generator v = ξ∂x + φ∂y:

prv(y′ − w(x, y)) = 0 whenever y′ = w(x, y),

where
prv = v + (Dx(φ− ξy′) + ξy′′) ∂y′ + · · · .



Prolongation of transformations and the LSC
For Γε : (x, y) 7→ (x̃, ỹ), the chain rule gives
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In both cases: prolongation of transformations is essential.
I For a transformation Γε : (x, y) 7→ (x̃(ε, x, y), ỹ(ε, x, y)) s.t.

Γ0 = id, prolong the transform to derivatives

ỹ′ =
dỹ
dx̃

=
Dx ỹ
Dx x̃

, ỹ′′ =
Dx ỹ′

Dx x̃
, ...

I The infinitesimal generator of Γε is v = ξ∂x + φ∂y where

ξ =
d

dε

∣∣∣
ε=0

x̃, φ =
d

dε

∣∣∣
ε=0

ỹ.

Its prolongation is naturally prv = v + φ1∂y′ + φ2∂y′′ + · · · where

φ1 =
d

dε

∣∣∣
ε=0

ỹ′, φ2 =
d

dε

∣∣∣
ε=0

ỹ′′, ...

I The general prolongation formula is equivalent to an evolutionary
representative

prv = ξDx + Q∂y + (DxQ)∂y′ + · · ·, Q(x, y, y′) = φ− ξy′.
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, ỹ′′ =
Dx ỹ′
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Symmetries of DDEs

I For simplicity, let n ∈ Z and x ∈ R be the independent variables
and let u ∈ R be the 1-dimensional dependent variable.

I Shorthand notations:

u = u(x,n), uj = u(x,n+j), u′ = Dxu(x,n), u′
j = Dxu(x,n+j), ...

I Noncommutativity [P, 2017]: how to prolong a transformation

Γε : (x,n, u) 7→ (x̃(ε, x,n, u),n, ũ(ε, x,n, u));

namely, how to calculate, for instance

ũ1 = ũ(ε, x,n + 1, u) or ũ(ε, x,n + 1, u1)?

ũ′
1 = ? (shift first or differentiate first?)
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Example. Consider the following local transformations

x̃ = x + εu, ũ = u.

I Then we have (S : n 7→ n + 1: forward shift)

Dx̃ ũ =
Dx ũ
Dx x̃

=
ux

1 + εux
,

S(Dx̃ ũ) = Sux

1 + εSux
,

and
Sũ = Su = u(x,n + 1),

Dx̃(Sũ) = Dx(Sũ)
Dx x̃

=
Sux

1 + εux
.

I Apparently S(Dx̃ ũ) 6= Dx̃(Sũ); which one is ũ′
1?



(1) An analytic approach
Remark. The discrete variable n should not be treated as a parameter
although it is discrete and invariant (ñ = n).

Example continued. Consider the following local transformations

x̃ = x + εu, ũ = u.

I (x,n, u) ⇔(S ,D = Dx) and (x̃, ñ, ũ) ⇔(S̃ , D̃ = Dx̃)

Certainly D̃S̃ = S̃D̃
I The calculation of ũ′

1 for u = u(x,n):

ũ′
1 = ũ′(x̃, ñ + 1) = S̃(D̃ũ(x̃, ñ)) = S̃(D̃u(x,n))

= S̃(D̃u(x̃ − εũ, ñ))

= S̃ (u′(x,n) · (1− εũ′(x̃, ñ)))
= u′(x̃ − εũ1, ñ + 1) · (1− εũ′(x̃, ñ + 1))

∴ ũ′
1 =

u′(x̃ − εũ1, ñ + 1)

1 + εu′(x̃ − εũ1, ñ + 1)
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ũ′
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(2) The geometric meaning
I The differential structure.

I Fix n, the jet bundle structure for each slice Tn = R×{n}×R:

J∞(Tn) = (u, u′, u′′, . . .)

I The total jet space is

J∞(T ) ∼= Z× J∞(Tn)

I The difference structure [Mansfield–Rojo-Echeburúa–Hydon–P,
2019].

I The total space T = R× Z×R is preserved by all translations

Tk : T → T , Tk : (x,n, u) 7→ (x,n + k, u)

I Prolongation space over n, denoted by P(Tn), is obtained by
pulling back the value of u at each Tn+k by using Tk:

uk = T∗
k (u|Tn+k )
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I The DD structure.
I Extend the translations Tk to the total jet space J∞(T ):

Tk : J∞(T ) → J∞(T )

(x,n, . . . , u(j), . . .) 7→ (x,n + k, . . . , u(j), . . .)

I Pulling back values of jets over n + k to n gives the space
P(J∞(Tn)). The total prolongation space is

P(J∞(T )) ∼= Z× P(J∞(Tn))

Remark. Let f be a function on P(J∞(T )), locally expressed as

fn = f (x,n, . . . , u(j)
l , . . .).

The pull back of fn+k = f (x,n + k, . . . , u(j)
l , . . .) using Tk gives

T∗
k fn+k = f (x,n + k, . . . , u(j)

l+k, . . .),

which is defined as the shift of fn, i.e.,

Skfn := T∗
k fn+k.
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Regular transformations

Definition. Transformations v = ξ∂x + φ∂u satisfying Sξ = ξ, meaning
ξ = ξ(x), are called regular/intrinsic.

Theorem. [P–Hydon, 2021] A one-parameter local Lie group of
transformations

Γε : T → T

preserves the geometric structure of the total prolongation space
P(J∞(T )) if and only if it is a group of regular transformations.
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Prolongation of vector fields
Theorem. [P–Hydon, 2021] Let v = ξ(x,n, u)∂x + φ(x,n, u)∂u be the
infinitesimal generator of a local Lie group of transformations

Γε : (x,n, u) 7→ (x̃,n, ũ),

where Γ0 = id and

ξ =
d
dε

∣∣∣
ε=0

x̃, φ =
d
dε

∣∣∣
ε=0

x̃.

Its prolongation to higher jets are given by the evolutionary representative

prv = ξD + Q∂u + (DQ)∂u′ + (SQ)∂u1
+ (DSQ)∂u′

1
+ · · ·

where Q(x,n, u, u′) = φ− ξu′ is the corresponding characteristic.

Remark. Symmetries of a DDE F = 0 can then be computed through
the linearized symmetry condition (equivalent to the Taylor expansion
approach):

prv(F) = 0 whenever F = 0.
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The Toda lattice

u′′ = exp(u−1 − u)− exp(u − u1)

I All of its Lie point symmetries are

x∂x + 2n∂u, ∂x , x∂u, ∂u

I Compared with [Levi–Winternitz, 1991]:

x∂x + 2n∂u, f (n)∂x , x∂u, ∂u

where f is arbitrary

Remark. f (n)∂x (f 6= const.) is not a symmetry of the Toda lattice.
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Partitioned DDEs

Example. The simple DDE
u′ =

u2

u
admits symmetries (using the linearized symmetry condition or Taylor
expansion)

v1 = ∂x , v2 = (−1)n∂x , v3 = (−1)n (x∂x + u∂u) ,

v4 = x∂x + u∂u, v5 = 2
⌊ n

2

⌋
u∂u, v6 = (−1)n2

⌊ n
2

⌋
u∂u,

where b·c denotes the floor function, e.g.,
⌊n
2

⌋
meaning the greatest

integer less than or equal to n/2.

Remark. A DDE can admit non-regular symmetries only when it is a
partitioned equation of the form

F(x,n, (u, u′, . . .), (uK , u′
K , . . .), (u2K , u′

2K , . . .), . . .) = 0,

where the integer is K ≥ 2 (or K ≤ −2 for a backward DDE).



Partitioned DDEs

Example. The simple DDE
u′ =

u2

u
admits symmetries (using the linearized symmetry condition or Taylor
expansion)

v1 = ∂x , v2 = (−1)n∂x , v3 = (−1)n (x∂x + u∂u) ,

v4 = x∂x + u∂u, v5 = 2
⌊ n

2

⌋
u∂u, v6 = (−1)n2

⌊ n
2

⌋
u∂u,

where b·c denotes the floor function, e.g.,
⌊n
2

⌋
meaning the greatest

integer less than or equal to n/2.

Remark. A DDE can admit non-regular symmetries only when it is a
partitioned equation of the form

F(x,n, (u, u′, . . .), (uK , u′
K , . . .), (u2K , u′

2K , . . .), . . .) = 0,

where the integer is K ≥ 2 (or K ≤ −2 for a backward DDE).



Group-invariant solutions/Similarity reduction: Toda

u′′ = exp(u−1 − u)− exp(u − u1)

I Recall its symmetries:

v1 = x∂x + 2n∂u, v2 = ∂x , v3 = x∂u, v4 = ∂u

I v1 + C0v4: The invariants are n and u
2n+C0

− ln x.

u(x,n) = (2n + C0) ln x −
n∑

k=0

ln
(
k2 + (C0 + 1)k + C1

)
+ C2

I v2 + C0v3: The invariants are n and u − C0x2

2 .

u(x,n) = C0

2
x2 −

n∑
k=0

ln (−C0k + C1) + C2



Group-invariant solutions/Similarity reduction: Toda
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Group-invariant solutions/Similarity reduction: Volterra

The Volterra equation
u′ = u(u1 − u−1)

I All (Lie point) symmetries:

v1 = ∂x , v2 = −x∂x + u∂u.

I Invariants of v = C0v1 + v2 are n and (x − C0)u:

u(x,n) = C1 + C2(−1)n − n
2(x − C0)

,

where C0, C1, C2 are all arbitrary constants.
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DD variational calculus
Theorem. A DD variational problem

N∑
n=0

∫
Ω

L(x,n, u, u1, u′, . . .)dx,

with Ω open and connected, is invariant with respect to the vector field
v = ξ∂x + φ∂u if and only if there exist functions Px and Pn such that
the Lagrangian satisfies the criterion of variational invariance:

prv(L) + L(Dξ) = DPx + (S − id)Pn.

I A DD Lagrangian L(x,n, u, u1, u′, . . .)

I DD Euler–Lagrange equation: E(L) = 0 with DD Euler operator

E :=
∑
j,l

(−D)jS−l ∂

∂u(j)
l

, u(j)
l = DjS lu

I Conservation law: DPx + (S − id)Pn = QE(L) where Q is called a
characteristic
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Noether’s Theorem for DDEs
Noether’s Theorem. There is a one-to-one correspondence between
symmetry characteristics of a variational problem with Lagrangian L and
characteristics of conservation laws of the corresponding Euler–Lagrange
equations.

prv(L) + L(Dξ) = DPx + (S − id)Pn

where prv = ξD + Q∂u + (DQ)∂u′ + · · ·
⇔

DAx + (S − id)An = QE(L)

Remark. All results can be generalised to higher-order symmetries:

Lie point symmetries Q = φ(x,n, u)− ξ(x,n, u)u′

⇒
higher-order symmetries Q(x,n, [u])

†[u] = (u, u1, u′, . . .) is a shorthand for u and finitely many of its shifts
and derivatives.
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Volterra equation u′ = u(u1 − u−1)

I By a change of variables

u = exp(v1 − v−1),

the Volterra equation becomes the Euler–Lagrange equation of

L = v−1v′ + exp(v1 − v−1).

I Variational symmetries v = (C1 + (−1)nC2) ∂v ⇔ conservation
laws

D (ln u) + (S−id) (−u−u−1) = 0,

D ((−1)n ln u) + (S−id) ((−1)n (u−u−1)) = 0.

Remark. A general inverse theory is not yet available.
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Noether’s Second Theorem

Noether’s Second Theorem. A DD variational problem admits
symmetries whose characteristic Q(x,n, [u; f ]) depends on R independent
arbitrary functions (

f 1(x,n), f 2(x,n), . . . , f R(x,n)
)

and their derivatives and shifts if and only if there exist DD operators Dα
r

(not all zero) yielding R independent DD relations among the
Euler–Lagrange equations:

Dα
r Eα(L) ≡ 0, r = 1, 2, . . . ,R.



Gauge-symmetry preserving semi-discretisations: An
example

Interaction of a scalar particle of mass m and charge e with an
electromagnetic field:

I Space-time coordinated by (x0 = t, x1, x2, x3) (x0 = n in the DD
case)

I Dependent variables:
I scalar and complex-valued ψ: wavefunction
I real-valued Aµ: electromagnetic four-potential

I Metric η = diag(−1, 1, 1, 1)



Gauge-symmetry preserving semi-discretisations: An
example

Interaction of a scalar particle of mass m and charge e with an
electromagnetic field:

I Space-time coordinated by (x0 = t, x1, x2, x3) (x0 = n in the DD
case)

I Dependent variables:
I scalar and complex-valued ψ: wavefunction
I real-valued Aµ: electromagnetic four-potential

I Metric η = diag(−1, 1, 1, 1)



The continuous system:
I The Lagrangian:

L =
1

4
FµνFµν + (∇µψ)(∇µψ)

∗ + m2ψψ∗

where
Fµν = Aµ,ν − Aν,µ, ∇µ = Dµ + ieAµ

I Euler–Lagrange equations:

Eψ(L) = 0, Eψ∗(L) = 0, EAµ(L) = 0

I Gauge-symmetries:

ψ 7→ exp(− ieλ), Aµ 7→ Aµ + ηµνλ,ν

where the function λ(x0, x1, x2, x3) is arbitrary and real-valued.
I Differential relation of Euler–Lagrange equations:

− ieψEψ(L) + ieψ∗Eψ∗(L)− Dµ (η
νµEAν (L)) ≡ 0



Fully discrete counterpart: [Christiansen–Halvorsen, 2011] (see also
[Hydon–Mansfield, 2011])

A DD counterpart: time t is discretized with time step h.
I The DD Lagrangian:

L =
1

4
FµνFµν + (∇µψ)(∇µψ)

∗ + m2ψψ∗

where by denoting the forward difference operator ∆ = S−id
h ,

Fµν = −Fνµ, ∀µ, ν,
F0µ = ∆Aµ − DµA0, µ 6= 0,

Fµν = Aµ,ν − Aν,µ, µ 6= 0, ν 6= 0

and
∇0 = ∆+

1− exp(− iehA0)

h
,

∇µ = Dµ + ieAµ, µ 6= 0.
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I DD Euler–Lagrange equations:

Eψ(L) = 0, Eψ∗(L) = 0, EAµ(L) = 0

I Gauge-symmetries:

ψ 7→ exp(− ieλ), A0 7→ A0−∆λ, Aµ 7→ Aµ+

3∑
ν=1

ηµνλ,ν (µ 6= 0)

where the function λ(n, x1, x2, x3) is again arbitrary and real-valued.
I Differential-difference relation of Euler–Lagrange equations:

− ieψEψ(L)+ieψ∗Eψ∗(L)−∆†(EA0(L))−
3∑

µ,ν=1

Dµ (η
νµEAν (L)) ≡ 0

where ∆† is adjoint to ∆:

∆† = − id−S−1

h
.



Summary

I The general prolongation formulation for symmetries of DDEs
is proved analytically, that allows us to compute symmetries
systematically.

I Continuous symmetries can be used to construct
group-invariant solutions of DDEs.

I Noether’s two theorems are extended to DD variational
problems.

[1] Finite-dimensional variational symmetries and conservation
laws

[2] Infinite-dimensional variational symmetries and differential
relations of (under-determined) Euler–Lagrange equations

[1.5] An intermediate theorem (infinite-dimensional variational
symmetries that are subject to constraints)



Thanks a lot for your attention.
Return!
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