Symmetries and Noether＇s conservation laws of semi－discrete equations

Linyu Peng
Keio University
Moving Frames and their Modern Applications
November 21－26， 2021
\dagger Joint work with Peter Hydon（University of Kent）

慶應義塾
Keio University

Review and motivations

A brief introduction to symmetries of DEs

Symmetries of DDEs

Noether's theorems for DDEs

Summary

Symmetries of DDEs: a brief review

- Finite difference equations: S. Maeda (1980s), Vladimir Dorodnitsyn (1990s-), Peter Hydon \& Elizabeth Mansfield (2000s-), ...

Symmetries of DDEs: a brief review

- Finite difference equations: S. Maeda (1980s), Vladimir Dorodnitsyn (1990s-), Peter Hydon \& Elizabeth Mansfield (2000s-), ...
- Semi-discrete equations (also known as differential-difference equations (DDEs)): Decio Levi \& Pavel Winternitz (1990s-), Ravil I. Yamilov (1990s-), ...

Symmetries of DDEs: a brief review

- Finite difference equations: S. Maeda (1980s), Vladimir Dorodnitsyn (1990s-), Peter Hydon \& Elizabeth Mansfield (2000s-), ...
- Semi-discrete equations (also known as differential-difference equations (DDEs)): Decio Levi \& Pavel Winternitz (1990s-), Ravil I. Yamilov (1990s-), ...

Challenge for DDEs: the noncommutativity (that we will see shortly)

- [Levi-Winternitz-Yamilov, 2010]: Lie point symmetries of differential-difference equations, Journal of Physics A: Mathematical and Theoretical 43, 292002.
- [P, 2017]: Symmetries, Conservation Laws, and Noether's Theorem for Differential-Difference Equations, Studies in Applied Mathematics 139, 457-502.
- [P-Hydon, 2021]: Transformations, symmetries and Noether theorems for differential-difference equations, preprint.

Motivations

Why is the study of semi-discrete equations important?

- Semi-discretization of PDEs and semi-continuum of P Δ Es
- They naturally arise as models of mechanical or physical systems, e.g., Toda lattice, Volterra equations, interconnected mechanical systems

LSI Circuit

Transmission Line

What is a symmetry (or symmetry group)?

Planar or 3D objects: A local diffeomorphism of transformation which preserves the structure and the shape.

- Rotation of an equilateral triangle by $2 k \pi / 3$ for any integer $k \in \mathbb{Z}$: a discrete symmetry

What is a symmetry (or symmetry group)?

Planar or 3D objects: A local diffeomorphism of transformation which preserves the structure and the shape.

- Rotation of an equilateral triangle by $2 k \pi / 3$ for any integer $k \in \mathbb{Z}$: a discrete symmetry

- Consider the unit circle $x^{2}+y^{2}=1$. The transformation Γ_{ε} is

$$
\Gamma_{\varepsilon}:\binom{x}{y} \mapsto\binom{\widetilde{x}}{\widetilde{y}}=\left(\begin{array}{cc}
\cos \varepsilon & -\sin \varepsilon \\
\sin \varepsilon & \cos \varepsilon
\end{array}\right)\binom{x}{y}, \quad \Gamma_{0}=\mathrm{id} .
$$

The infinitesimal generator with respect to Γ_{ε} is

$$
\mathbf{v}=\left(\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{x}\right) \partial_{x}+\left(\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{y}\right) \partial_{y}=-y \partial_{x}+x \partial_{y} .
$$

Symmetries of DEs

For the unit circle $x^{2}+y^{2}=1$, we notice that after transformation Γ_{ε} we have

$$
\widetilde{x}^{2}+\widetilde{y}^{2}=\left(x^{2}+y^{2}\right)=1 .
$$

Symmetries of DEs

For the unit circle $x^{2}+y^{2}=1$, we notice that after transformation Γ_{ε} we have

$$
\widetilde{x}^{2}+\widetilde{y}^{2}=\left(x^{2}+y^{2}\right)=1 .
$$

Example. Consider the Riccati equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+1}{x}+\frac{y^{2}}{x^{3}}
$$

and the transformation

$$
\Gamma_{\varepsilon}:(x, y) \mapsto\left(\widetilde{x}=\frac{x}{1-\varepsilon x}, \widetilde{y}=\frac{y}{1-\varepsilon x}\right) .
$$

Symmetries of DEs

For the unit circle $x^{2}+y^{2}=1$, we notice that after transformation Γ_{ε} we have

$$
\widetilde{x}^{2}+\widetilde{y}^{2}=\left(x^{2}+y^{2}\right)=1 .
$$

Example. Consider the Riccati equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+1}{x}+\frac{y^{2}}{x^{3}}
$$

and the transformation

$$
\Gamma_{\varepsilon}:(x, y) \mapsto\left(\widetilde{x}=\frac{x}{1-\varepsilon x}, \widetilde{y}=\frac{y}{1-\varepsilon x}\right) .
$$

- Direct calculation shows that

$$
\widetilde{y}^{\prime}=\frac{\widetilde{y}+1}{\widetilde{x}}+\frac{\widetilde{y}^{2}}{\widetilde{x}^{3}}
$$

Prolongation of transformations and the LSC

For $\Gamma_{\varepsilon}:(x, y) \mapsto(\widetilde{x}, \widetilde{y})$, the chain rule gives

$$
\widetilde{y}^{\prime}=\frac{\mathrm{d} \widetilde{y}}{\mathrm{~d} \widetilde{x}}=\frac{D_{x} \widetilde{y}}{D_{x} \widetilde{x}}, \quad \ldots
$$

Prolongation of transformations and the LSC

For $\Gamma_{\varepsilon}:(x, y) \mapsto(\widetilde{x}, \widetilde{y})$, the chain rule gives

$$
\widetilde{y}^{\prime}=\frac{\mathrm{d} \widetilde{y}}{\mathrm{~d} \widetilde{x}}=\frac{D_{x} \widetilde{y}}{D_{x} \widetilde{x}}, \quad \ldots
$$

To determine symmetries of $y^{\prime}-w(x, y)=0$ using the linearized symmetry condition (LSC):

1. Taylor expansion of $\widetilde{y}^{\prime}-w(\widetilde{x}, \widetilde{y})=0$:

$$
y^{\prime}-w(x, y)+\varepsilon\left(\phi_{x}+\left(\phi_{y}-\xi_{x}\right) y^{\prime}-\xi_{y} y^{\prime 2}-\xi w_{x}-\phi w_{y}\right)+O\left(\varepsilon^{2}\right)=0
$$

where

$$
\widetilde{x}=x+\varepsilon \xi(x, y)+O\left(\varepsilon^{2}\right), \quad \widetilde{y}=y+\varepsilon \phi(x, y)+O\left(\varepsilon^{2}\right)
$$

2. Using the infinitesimal generator $\mathbf{v}=\xi \partial_{x}+\phi \partial_{y}$:

$$
\operatorname{prv}\left(y^{\prime}-w(x, y)\right)=0 \text { whenever } y^{\prime}=w(x, y)
$$

where

$$
\mathbf{p r v}=\mathbf{v}+\left(D_{x}\left(\phi-\xi y^{\prime}\right)+\xi y^{\prime \prime}\right) \partial_{y^{\prime}}+\cdots
$$

In both cases: prolongation of transformations is essential.

- For a transformation $\Gamma_{\varepsilon}:(x, y) \mapsto(\widetilde{x}(\varepsilon, x, y), \widetilde{y}(\varepsilon, x, y))$ s.t. $\Gamma_{0}=\mathrm{id}$, prolong the transform to derivatives

$$
\widetilde{y}^{\prime}=\frac{\mathrm{d} \widetilde{y}}{\mathrm{~d} \widetilde{x}}=\frac{D_{x} \widetilde{y}}{D_{x} \widetilde{x}}, \quad \widetilde{y}^{\prime \prime}=\frac{D_{x} \widetilde{y}^{\prime}}{D_{x} \widetilde{x}}, \quad \ldots
$$

In both cases: prolongation of transformations is essential.

- For a transformation $\Gamma_{\varepsilon}:(x, y) \mapsto(\widetilde{x}(\varepsilon, x, y), \widetilde{y}(\varepsilon, x, y))$ s.t. $\Gamma_{0}=$ id, prolong the transform to derivatives

$$
\widetilde{y}^{\prime}=\frac{\mathrm{d} \widetilde{y}}{\mathrm{~d} \widetilde{x}}=\frac{D_{x} \widetilde{y}}{D_{x} \widetilde{x}}, \quad \widetilde{y}^{\prime \prime}=\frac{D_{x} \widetilde{y}^{\prime}}{D_{x} \widetilde{x}},
$$

- The infinitesimal generator of Γ_{ε} is $\mathbf{v}=\xi \partial_{x}+\phi \partial_{y}$ where

$$
\xi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{x}, \quad \phi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{y} .
$$

Its prolongation is naturally $\mathbf{p r v}=\mathbf{v}+\phi^{1} \partial_{y^{\prime}}+\phi^{2} \partial_{y^{\prime \prime}}+\cdots$ where

$$
\phi^{1}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{y}^{\prime}, \quad \phi^{2}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{y}^{\prime \prime},
$$

In both cases: prolongation of transformations is essential.

- For a transformation $\Gamma_{\varepsilon}:(x, y) \mapsto(\widetilde{x}(\varepsilon, x, y), \widetilde{y}(\varepsilon, x, y))$ s.t. $\Gamma_{0}=$ id, prolong the transform to derivatives

$$
\widetilde{y}^{\prime}=\frac{\mathrm{d} \widetilde{y}}{\mathrm{~d} \widetilde{x}}=\frac{D_{x} \widetilde{y}}{D_{x} \widetilde{x}}, \quad \widetilde{y}^{\prime \prime}=\frac{D_{x} \widetilde{y}^{\prime}}{D_{x} \widetilde{x}},
$$

- The infinitesimal generator of Γ_{ε} is $\mathbf{v}=\xi \partial_{x}+\phi \partial_{y}$ where

$$
\xi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{x}, \quad \phi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{y} .
$$

Its prolongation is naturally $\mathbf{p r v}=\mathbf{v}+\phi^{1} \partial_{y^{\prime}}+\phi^{2} \partial_{y^{\prime \prime}}+\cdots$ where

$$
\phi^{1}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{y}^{\prime}, \quad \phi^{2}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{y}^{\prime \prime},
$$

- The general prolongation formula is equivalent to an evolutionary representative

$$
\mathbf{p r v}=\xi D_{x}+Q \partial_{y}+\left(D_{x} Q\right) \partial_{y^{\prime}}+\cdots, \quad Q\left(x, y, y^{\prime}\right)=\phi-\xi y^{\prime} .
$$

Symmetries of DDEs

- For simplicity, let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$ be the independent variables and let $u \in \mathbb{R}$ be the 1 -dimensional dependent variable.

Symmetries of DDEs

- For simplicity, let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$ be the independent variables and let $u \in \mathbb{R}$ be the 1 -dimensional dependent variable.
- Shorthand notations:

$$
u=u(x, n), \quad u_{j}=u(x, n+j), u^{\prime}=D_{x} u(x, n), \quad u_{j}^{\prime}=D_{x} u(x, n+j), \ldots
$$

Symmetries of DDEs

- For simplicity, let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$ be the independent variables and let $u \in \mathbb{R}$ be the 1 -dimensional dependent variable.
- Shorthand notations:

$$
u=u(x, n), \quad u_{j}=u(x, n+j), \quad u^{\prime}=D_{x} u(x, n), \quad u_{j}^{\prime}=D_{x} u(x, n+j), \ldots
$$

- Noncommutativity [P, 2017]: how to prolong a transformation

$$
\Gamma_{\varepsilon}:(x, n, u) \mapsto(\widetilde{x}(\varepsilon, x, n, u), n, \widetilde{u}(\varepsilon, x, n, u)) ;
$$

namely, how to calculate, for instance

$$
\begin{aligned}
& \widetilde{u}_{1}=\widetilde{u}(\varepsilon, x, n+1, u) \text { or } \widetilde{u}\left(\varepsilon, x, n+1, u_{1}\right) ? \\
& \widetilde{u}_{1}^{\prime}=?(\text { shift first or differentiate first?) }
\end{aligned}
$$

Example. Consider the following local transformations

$$
\widetilde{x}=x+\varepsilon u, \quad \widetilde{u}=u .
$$

- Then we have ($S: n \mapsto n+1$: forward shift)

$$
\begin{aligned}
D_{\widetilde{x}} \widetilde{u} & =\frac{D_{x} \widetilde{u}}{D_{x} \widetilde{x}}=\frac{u_{x}}{1+\varepsilon u_{x}}, \\
S\left(D_{\widetilde{x}} \widetilde{u}\right) & =\frac{S u_{x}}{1+\varepsilon S u_{x}},
\end{aligned}
$$

and

$$
\begin{aligned}
S \widetilde{u} & =S u=u(x, n+1), \\
D_{\widetilde{x}}(S \widetilde{u}) & =\frac{D_{x}(S \widetilde{u})}{D_{x} \widetilde{x}}=\frac{S u_{x}}{1+\varepsilon u_{x}} .
\end{aligned}
$$

- Apparently $S\left(D_{\widetilde{x}} \widetilde{u}\right) \neq D_{\widetilde{x}}(S \widetilde{u})$; which one is $\widetilde{u}_{1}^{\prime}$?

(1) An analytic approach

Remark. The discrete variable n should not be treated as a parameter although it is discrete and invariant $(\widetilde{n}=n)$.

(1) An analytic approach

Remark. The discrete variable n should not be treated as a parameter although it is discrete and invariant $(\widetilde{n}=n)$.
Example continued. Consider the following local transformations

$$
\widetilde{x}=x+\varepsilon u, \quad \widetilde{u}=u
$$

- $(x, n, u) \Leftrightarrow\left(S, D=D_{x}\right)$ and $(\widetilde{x}, \widetilde{n}, \widetilde{u}) \Leftrightarrow\left(\widetilde{S}, \widetilde{D}=D_{\widetilde{x}}\right)$

Certainly $\widetilde{D} \widetilde{S}=\widetilde{S} \widetilde{D}$

- The calculation of $\widetilde{u}_{1}^{\prime}$ for $u=u(x, n)$:

$$
\begin{aligned}
\widetilde{u}_{1}^{\prime}=\widetilde{u}^{\prime}(\widetilde{x}, \widetilde{n}+1) & =\widetilde{S}(\widetilde{D} \widetilde{u}(\widetilde{x}, \widetilde{n}))=\widetilde{S}(\widetilde{D} u(x, n)) \\
& =\widetilde{S}(\widetilde{D} u(\widetilde{x}-\varepsilon \widetilde{u}, \widetilde{n})) \\
& =\widetilde{S}\left(u^{\prime}(x, n) \cdot\left(1-\varepsilon \widetilde{u}^{\prime}(\widetilde{x}, \widetilde{n})\right)\right) \\
& =u^{\prime}\left(\widetilde{x}-\varepsilon \widetilde{u}_{1}, \widetilde{n}+1\right) \cdot\left(1-\varepsilon \widetilde{u}^{\prime}(\widetilde{x}, \widetilde{n}+1)\right) \\
\therefore \quad \widetilde{u}_{1}^{\prime} & =\frac{u^{\prime}\left(\widetilde{x}-\varepsilon \widetilde{u}_{1}, \widetilde{n}+1\right)}{1+\varepsilon u^{\prime}\left(\widetilde{x}-\varepsilon \widetilde{u}_{1}, \widetilde{n}+1\right)}
\end{aligned}
$$

(2) The geometric meaning

- The differential structure.
- Fix n, the jet bundle structure for each slice $\mathcal{T}_{n}=\mathbb{R} \times\{n\} \times \mathbb{R}$:

$$
J^{\infty}\left(\mathcal{T}_{n}\right)=\left(u, u^{\prime}, u^{\prime \prime}, \ldots\right)
$$

- The total jet space is

$$
J^{\infty}(\mathcal{T}) \cong \mathbb{Z} \times J^{\infty}\left(\mathcal{T}_{n}\right)
$$

(2) The geometric meaning

- The differential structure.
- Fix n, the jet bundle structure for each slice $\mathcal{T}_{n}=\mathbb{R} \times\{n\} \times \mathbb{R}$:

$$
J^{\infty}\left(\mathcal{T}_{n}\right)=\left(u, u^{\prime}, u^{\prime \prime}, \ldots\right)
$$

- The total jet space is

$$
J^{\infty}(\mathcal{T}) \cong \mathbb{Z} \times J^{\infty}\left(\mathcal{T}_{n}\right)
$$

- The difference structure [Mansfield-Rojo-Echeburúa-Hydon-P, 2019].
- The total space $\mathcal{T}=\mathbb{R} \times \mathbb{Z} \times \mathbb{R}$ is preserved by all translations

$$
T_{k}: \mathcal{T} \rightarrow \mathcal{T}, \quad T_{k}:(x, n, u) \mapsto(x, n+k, u)
$$

- Prolongation space over n, denoted by $P\left(\mathcal{T}_{n}\right)$, is obtained by pulling back the value of u at each \mathcal{T}_{n+k} by using T_{k} :

$$
u_{k}=T_{k}^{*}\left(\left.u\right|_{\mathcal{T}_{n+k}}\right)
$$

- The DD structure.
- Extend the translations T_{k} to the total jet space $J^{\infty}(\mathcal{T})$:

$$
\begin{aligned}
T_{k}: J^{\infty}(\mathcal{T}) & \rightarrow J^{\infty}(\mathcal{T}) \\
\left(x, n, \ldots, u^{(j)}, \ldots\right) & \mapsto\left(x, n+k, \ldots, u^{(j)}, \ldots\right)
\end{aligned}
$$

- Pulling back values of jets over $n+k$ to n gives the space $P\left(J^{\infty}\left(\mathcal{T}_{n}\right)\right)$. The total prolongation space is

$$
P\left(J^{\infty}(\mathcal{T})\right) \cong \mathbb{Z} \times P\left(J^{\infty}\left(\mathcal{T}_{n}\right)\right)
$$

- The DD structure.
- Extend the translations T_{k} to the total jet space $J^{\infty}(\mathcal{T})$:

$$
\begin{aligned}
T_{k}: J^{\infty}(\mathcal{T}) & \rightarrow J^{\infty}(\mathcal{T}) \\
\left(x, n, \ldots, u^{(j)}, \ldots\right) & \mapsto\left(x, n+k, \ldots, u^{(j)}, \ldots\right)
\end{aligned}
$$

- Pulling back values of jets over $n+k$ to n gives the space $P\left(J^{\infty}\left(\mathcal{T}_{n}\right)\right)$. The total prolongation space is

$$
P\left(J^{\infty}(\mathcal{T})\right) \cong \mathbb{Z} \times P\left(J^{\infty}\left(\mathcal{T}_{n}\right)\right)
$$

Remark. Let f be a function on $P\left(J^{\infty}(\mathcal{T})\right)$, locally expressed as

$$
f_{n}=f\left(x, n, \ldots, u_{l}^{(j)}, \ldots\right)
$$

The pull back of $f_{n+k}=f\left(x, n+k, \ldots, u_{l}^{(j)}, \ldots\right)$ using T_{k} gives

$$
T_{k}^{*} f_{n+k}=f\left(x, n+k, \ldots, u_{l+k}^{(j)}, \ldots\right)
$$

which is defined as the shift of f_{n}, i.e.,

$$
S^{k} f_{n}:=T_{k}^{*} f_{n+k}
$$

Regular transformations

Definition. Transformations $\mathbf{v}=\xi \partial_{x}+\phi \partial_{u}$ satisfying $S \xi=\xi$, meaning $\xi=\xi(x)$, are called regular/intrinsic.

Regular transformations

Definition. Transformations $\mathbf{v}=\xi \partial_{x}+\phi \partial_{u}$ satisfying $S \xi=\xi$, meaning $\xi=\xi(x)$, are called regular/intrinsic.

Theorem. [P-Hydon, 2021] A one-parameter local Lie group of transformations

$$
\Gamma_{\varepsilon}: \mathcal{T} \rightarrow \mathcal{T}
$$

preserves the geometric structure of the total prolongation space $P\left(J^{\infty}(\mathcal{T})\right)$ if and only if it is a group of regular transformations.

Prolongation of vector fields

Theorem. [P-Hydon, 2021] Let $\mathbf{v}=\xi(x, n, u) \partial_{x}+\phi(x, n, u) \partial_{u}$ be the infinitesimal generator of a local Lie group of transformations

$$
\Gamma_{\varepsilon}:(x, n, u) \mapsto(\widetilde{x}, n, \widetilde{u}),
$$

where $\Gamma_{0}=\mathrm{id}$ and

$$
\xi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{x}, \quad \phi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{x} .
$$

Its prolongation to higher jets are given by the evolutionary representative

$$
\mathbf{p r v}=\xi D+Q \partial_{u}+(D Q) \partial_{u^{\prime}}+(S Q) \partial_{u_{1}}+(D S Q) \partial_{u_{1}^{\prime}}+\cdots
$$

where $Q\left(x, n, u, u^{\prime}\right)=\phi-\xi u^{\prime}$ is the corresponding characteristic.

Prolongation of vector fields

Theorem. [P-Hydon, 2021] Let $\mathbf{v}=\xi(x, n, u) \partial_{x}+\phi(x, n, u) \partial_{u}$ be the infinitesimal generator of a local Lie group of transformations

$$
\Gamma_{\varepsilon}:(x, n, u) \mapsto(\widetilde{x}, n, \widetilde{u})
$$

where $\Gamma_{0}=\mathrm{id}$ and

$$
\xi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{x}, \quad \phi=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \widetilde{x} .
$$

Its prolongation to higher jets are given by the evolutionary representative

$$
\mathbf{p r v}=\xi D+Q \partial_{u}+(D Q) \partial_{u^{\prime}}+(S Q) \partial_{u_{1}}+(D S Q) \partial_{u_{1}^{\prime}}+\cdots
$$

where $Q\left(x, n, u, u^{\prime}\right)=\phi-\xi u^{\prime}$ is the corresponding characteristic.
Remark. Symmetries of a DDE $F=0$ can then be computed through the linearized symmetry condition (equivalent to the Taylor expansion approach):

$$
\operatorname{prv}(F)=0 \text { whenever } F=0
$$

The Toda lattice

$$
u^{\prime \prime}=\exp \left(u_{-1}-u\right)-\exp \left(u-u_{1}\right)
$$

- All of its Lie point symmetries are

$$
x \partial_{x}+2 n \partial_{u}, \quad \partial_{x}, \quad x \partial_{u}, \quad \partial_{u}
$$

The Toda lattice

$$
u^{\prime \prime}=\exp \left(u_{-1}-u\right)-\exp \left(u-u_{1}\right)
$$

- All of its Lie point symmetries are

$$
x \partial_{x}+2 n \partial_{u}, \quad \partial_{x}, \quad x \partial_{u}, \quad \partial_{u}
$$

- Compared with [Levi-Winternitz, 1991]:

$$
x \partial_{x}+2 n \partial_{u}, \quad f(n) \partial_{x}, \quad x \partial_{u}, \quad \partial_{u}
$$

where f is arbitrary

The Toda lattice

$$
u^{\prime \prime}=\exp \left(u_{-1}-u\right)-\exp \left(u-u_{1}\right)
$$

- All of its Lie point symmetries are

$$
x \partial_{x}+2 n \partial_{u}, \quad \partial_{x}, \quad x \partial_{u}, \quad \partial_{u}
$$

- Compared with [Levi-Winternitz, 1991]:

$$
x \partial_{x}+2 n \partial_{u}, \quad f(n) \partial_{x}, \quad x \partial_{u}, \quad \partial_{u}
$$

where f is arbitrary

Remark. $f(n) \partial_{x}(f \neq$ const. $)$ is not a symmetry of the Toda lattice.

Partitioned DDEs

Example. The simple DDE

$$
u^{\prime}=\frac{u_{2}}{u}
$$

admits symmetries (using the linearized symmetry condition or Taylor expansion)

$$
\begin{aligned}
& \mathbf{v}_{1}=\partial_{x}, \quad \mathbf{v}_{2}=(-1)^{n} \partial_{x}, \quad \mathbf{v}_{3}=(-1)^{n}\left(x \partial_{x}+u \partial_{u}\right), \\
& \mathbf{v}_{4}=x \partial_{x}+u \partial_{u}, \quad \mathbf{v}_{5}=2^{\left\lfloor\frac{n}{2}\right\rfloor} u \partial_{u}, \quad \mathbf{v}_{6}=(-1)^{n} 2^{\left\lfloor\frac{n}{2}\right\rfloor} u \partial_{u},
\end{aligned}
$$

where $\lfloor\cdot\rfloor$ denotes the floor function, e.g., $\left\lfloor\frac{n}{2}\right\rfloor$ meaning the greatest integer less than or equal to $n / 2$.

Partitioned DDEs

Example. The simple DDE

$$
u^{\prime}=\frac{u_{2}}{u}
$$

admits symmetries (using the linearized symmetry condition or Taylor expansion)

$$
\begin{aligned}
& \mathbf{v}_{1}=\partial_{x}, \quad \mathbf{v}_{2}=(-1)^{n} \partial_{x}, \quad \mathbf{v}_{3}=(-1)^{n}\left(x \partial_{x}+u \partial_{u}\right) \\
& \mathbf{v}_{4}=x \partial_{x}+u \partial_{u}, \quad \mathbf{v}_{5}=2^{\left\lfloor\frac{n}{2}\right\rfloor} u \partial_{u}, \quad \mathbf{v}_{6}=(-1)^{n} 2^{\left\lfloor\frac{n}{2}\right\rfloor} u \partial_{u}
\end{aligned}
$$

where $\lfloor\cdot\rfloor$ denotes the floor function, e.g., $\left\lfloor\frac{n}{2}\right\rfloor$ meaning the greatest integer less than or equal to $n / 2$.

Remark. A DDE can admit non-regular symmetries only when it is a partitioned equation of the form

$$
F\left(x, n,\left(u, u^{\prime}, \ldots\right),\left(u_{K}, u_{K}^{\prime}, \ldots\right),\left(u_{2 K}, u_{2 K}^{\prime}, \ldots\right), \ldots\right)=0
$$

where the integer is $K \geq 2$ (or $K \leq-2$ for a backward DDE).

Group-invariant solutions/Similarity reduction: Toda

$$
u^{\prime \prime}=\exp \left(u_{-1}-u\right)-\exp \left(u-u_{1}\right)
$$

- Recall its symmetries:

$$
\mathbf{v}_{1}=x \partial_{x}+2 n \partial_{u}, \quad \mathbf{v}_{2}=\partial_{x}, \quad \mathbf{v}_{3}=x \partial_{u}, \quad \mathbf{v}_{4}=\partial_{u}
$$

Group-invariant solutions/Similarity reduction: Toda

$$
u^{\prime \prime}=\exp \left(u_{-1}-u\right)-\exp \left(u-u_{1}\right)
$$

- Recall its symmetries:

$$
\mathbf{v}_{1}=x \partial_{x}+2 n \partial_{u}, \quad \mathbf{v}_{2}=\partial_{x}, \quad \mathbf{v}_{3}=x \partial_{u}, \quad \mathbf{v}_{4}=\partial_{u}
$$

$-\mathbf{v}_{1}+C_{0} \mathbf{v}_{4}$: The invariants are n and $\frac{u}{2 n+C_{0}}-\ln x$.

$$
u(x, n)=\left(2 n+C_{0}\right) \ln x-\sum_{k=0}^{n} \ln \left(k^{2}+\left(C_{0}+1\right) k+C_{1}\right)+C_{2}
$$

- $\mathbf{v}_{2}+C_{0} \mathbf{v}_{3}$: The invariants are n and $u-\frac{C_{0} x^{2}}{2}$.

$$
u(x, n)=\frac{C_{0}}{2} x^{2}-\sum_{k=0}^{n} \ln \left(-C_{0} k+C_{1}\right)+C_{2}
$$

Group-invariant solutions/Similarity reduction: Volterra

The Volterra equation

$$
u^{\prime}=u\left(u_{1}-u_{-1}\right)
$$

- All (Lie point) symmetries:

$$
\mathbf{v}_{1}=\partial_{x}, \quad \mathbf{v}_{2}=-x \partial_{x}+u \partial_{u} .
$$

Group-invariant solutions/Similarity reduction: Volterra

The Volterra equation

$$
u^{\prime}=u\left(u_{1}-u_{-1}\right)
$$

- All (Lie point) symmetries:

$$
\mathbf{v}_{1}=\partial_{x}, \quad \mathbf{v}_{2}=-x \partial_{x}+u \partial_{u}
$$

- Invariants of $\mathbf{v}=C_{0} \mathbf{v}_{1}+\mathbf{v}_{2}$ are n and $\left(x-C_{0}\right) u$:

$$
u(x, n)=\frac{C_{1}+C_{2}(-1)^{n}-n}{2\left(x-C_{0}\right)}
$$

where C_{0}, C_{1}, C_{2} are all arbitrary constants.

DD variational calculus

Theorem. A DD variational problem

$$
\sum_{n=0}^{N} \int_{\Omega} L\left(x, n, u, u_{1}, u^{\prime}, \ldots\right) \mathrm{d} x
$$

with Ω open and connected, is invariant with respect to the vector field $\mathbf{v}=\xi \partial_{x}+\phi \partial_{u}$ if and only if there exist functions P^{x} and P^{n} such that the Lagrangian satisfies the criterion of variational invariance:

$$
\operatorname{prv}(L)+L(D \xi)=D P^{x}+(S-\mathrm{id}) P^{n}
$$

DD variational calculus

Theorem. A DD variational problem

$$
\sum_{n=0}^{N} \int_{\Omega} L\left(x, n, u, u_{1}, u^{\prime}, \ldots\right) \mathrm{d} x
$$

with Ω open and connected, is invariant with respect to the vector field $\mathbf{v}=\xi \partial_{x}+\phi \partial_{u}$ if and only if there exist functions P^{x} and P^{n} such that the Lagrangian satisfies the criterion of variational invariance:

$$
\operatorname{prv}(L)+L(D \xi)=D P^{x}+(S-\mathrm{id}) P^{n}
$$

- A DD Lagrangian $L\left(x, n, u, u_{1}, u^{\prime}, \ldots\right)$
- DD Euler-Lagrange equation: $\mathbf{E}(L)=0$ with DD Euler operator

$$
\mathbf{E}:=\sum_{j, l}(-D)^{j} S^{-l} \frac{\partial}{\partial u_{l}^{(j)}}, \quad u_{l}^{(j)}=D^{j} S^{l} u
$$

- Conservation law: $D P^{x}+(S-\mathrm{id}) P^{n}=Q \mathbf{E}(L)$ where Q is called a characteristic

Noether's Theorem for DDEs

Noether's Theorem. There is a one-to-one correspondence between symmetry characteristics of a variational problem with Lagrangian L and characteristics of conservation laws of the corresponding Euler-Lagrange equations.

$$
\begin{aligned}
& \quad \operatorname{prv}(L)+L(D \xi)=D P^{x}+(S-\mathrm{id}) P^{n} \\
& \quad \text { where prv }=\xi D+Q \partial_{u}+(D Q) \partial_{u^{\prime}}+\cdots \\
& \Leftrightarrow \\
& \quad D A^{x}+(S-\mathrm{id}) A^{n}=Q \mathbf{E}(L)
\end{aligned}
$$

Noether's Theorem for DDEs

Noether's Theorem. There is a one-to-one correspondence between symmetry characteristics of a variational problem with Lagrangian L and characteristics of conservation laws of the corresponding Euler-Lagrange equations.

$$
\begin{aligned}
& \operatorname{prv}(L)+L(D \xi)=D P^{x}+(S-\mathrm{id}) P^{n} \\
& \text { where } \operatorname{prv}=\xi D+Q \partial_{u}+(D Q) \partial_{u^{\prime}}+\cdots \\
\Leftrightarrow & \\
& D A^{x}+(S-\mathrm{id}) A^{n}=Q \mathbf{E}(L)
\end{aligned}
$$

Remark. All results can be generalised to higher-order symmetries:

$$
\begin{aligned}
& \text { Lie point symmetries } Q=\phi(x, n, u)-\xi(x, n, u) u^{\prime} \\
& \Rightarrow
\end{aligned}
$$

higher-order symmetries $Q(x, n,[u])$
$\dagger[u]=\left(u, u_{1}, u^{\prime}, \ldots\right)$ is a shorthand for u and finitely many of its shifts and derivatives.

Volterra equation $u^{\prime}=u\left(u_{1}-u_{-1}\right)$

- By a change of variables

$$
u=\exp \left(v_{1}-v_{-1}\right)
$$

the Volterra equation becomes the Euler-Lagrange equation of

$$
L=v_{-1} v^{\prime}+\exp \left(v_{1}-v_{-1}\right)
$$

Volterra equation $u^{\prime}=u\left(u_{1}-u_{-1}\right)$

- By a change of variables

$$
u=\exp \left(v_{1}-v_{-1}\right)
$$

the Volterra equation becomes the Euler-Lagrange equation of

$$
L=v_{-1} v^{\prime}+\exp \left(v_{1}-v_{-1}\right)
$$

- Variational symmetries $\mathbf{v}=\left(C_{1}+(-1)^{n} C_{2}\right) \partial_{v} \Leftrightarrow$ conservation laws

$$
\begin{aligned}
D(\ln u)+(S-\mathrm{id})\left(-u-u_{-1}\right) & =0, \\
D\left((-1)^{n} \ln u\right)+(S-\mathrm{id})\left((-1)^{n}\left(u-u_{-1}\right)\right) & =0 .
\end{aligned}
$$

Volterra equation $u^{\prime}=u\left(u_{1}-u_{-1}\right)$

- By a change of variables

$$
u=\exp \left(v_{1}-v_{-1}\right)
$$

the Volterra equation becomes the Euler-Lagrange equation of

$$
L=v_{-1} v^{\prime}+\exp \left(v_{1}-v_{-1}\right)
$$

- Variational symmetries $\mathbf{v}=\left(C_{1}+(-1)^{n} C_{2}\right) \partial_{v} \Leftrightarrow$ conservation laws

$$
\begin{array}{r}
D(\ln u)+(S-\mathrm{id})\left(-u-u_{-1}\right)=0 \\
D\left((-1)^{n} \ln u\right)+(S-\mathrm{id})\left((-1)^{n}\left(u-u_{-1}\right)\right)=0
\end{array}
$$

Remark. A general inverse theory is not yet available.

Noether's Second Theorem

Noether's Second Theorem. A DD variational problem admits symmetries whose characteristic $Q(x, n,[u ; f])$ depends on R independent arbitrary functions

$$
\left(f^{1}(x, n), f^{2}(x, n), \ldots, f^{R}(x, n)\right)
$$

and their derivatives and shifts if and only if there exist DD operators \mathcal{D}_{r}^{α} (not all zero) yielding R independent DD relations among the Euler-Lagrange equations:

$$
\mathcal{D}_{r}^{\alpha} \mathbf{E}_{\alpha}(L) \equiv 0, \quad r=1,2, \ldots, R
$$

Gauge-symmetry preserving semi-discretisations: An example

Interaction of a scalar particle of mass m and charge e with an electromagnetic field:

- Space-time coordinated by $\left(x^{0}=t, x^{1}, x^{2}, x^{3}\right)\left(x^{0}=n\right.$ in the DD case)
- Dependent variables:
- scalar and complex-valued ψ : wavefunction
- real-valued A^{μ} : electromagnetic four-potential
- Metric $\eta=\operatorname{diag}(-1,1,1,1)$

Gauge-symmetry preserving semi-discretisations: An example

Interaction of a scalar particle of mass m and charge e with an electromagnetic field:

- Space-time coordinated by $\left(x^{0}=t, x^{1}, x^{2}, x^{3}\right)\left(x^{0}=n\right.$ in the DD case)
- Dependent variables:
- scalar and complex-valued ψ : wavefunction
- real-valued A^{μ} : electromagnetic four-potential
- Metric $\eta=\operatorname{diag}(-1,1,1,1)$

The continuous system:

- The Lagrangian:

$$
L=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(\nabla_{\mu} \psi\right)\left(\nabla_{\mu} \psi\right)^{*}+m^{2} \psi \psi^{*}
$$

where

$$
F_{\mu \nu}=A_{\mu, \nu}-A_{\nu, \mu}, \quad \nabla_{\mu}=D_{\mu}+\mathrm{i} e A_{\mu}
$$

- Euler-Lagrange equations:

$$
\mathbf{E}_{\psi}(L)=0, \quad \mathbf{E}_{\psi^{*}}(L)=0, \quad \mathbf{E}_{A^{\mu}}(L)=0
$$

- Gauge-symmetries:

$$
\psi \mapsto \exp (-\mathrm{i} e \lambda), \quad A^{\mu} \mapsto A^{\mu}+\eta^{\mu \nu} \lambda_{, \nu}
$$

where the function $\lambda\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ is arbitrary and real-valued.

- Differential relation of Euler-Lagrange equations:

$$
-\mathrm{i} e \psi \mathbf{E}_{\psi}(L)+\mathrm{i} e \psi^{*} \mathbf{E}_{\psi^{*}}(L)-D_{\mu}\left(\eta^{\nu \mu} \mathbf{E}_{A^{\nu}}(L)\right) \equiv 0
$$

Fully discrete counterpart: [Christiansen-Halvorsen, 2011] (see also [Hydon-Mansfield, 2011])

Fully discrete counterpart: [Christiansen-Halvorsen, 2011] (see also [Hydon-Mansfield, 2011])

A DD counterpart: time t is discretized with time step h.

- The DD Lagrangian:

$$
L=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(\nabla_{\mu} \psi\right)\left(\nabla_{\mu} \psi\right)^{*}+m^{2} \psi \psi^{*}
$$

where by denoting the forward difference operator $\Delta=\frac{S \text {-id }}{h}$,

$$
\begin{aligned}
& F_{\mu \nu}=-F_{\nu \mu}, \quad \forall \mu, \nu, \\
& F_{0 \mu}=\Delta A_{\mu}-D_{\mu} A_{0}, \quad \mu \neq 0, \\
& F_{\mu \nu}=A_{\mu, \nu}-A_{\nu, \mu}, \quad \mu \neq 0, \nu \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
& \nabla_{0}=\Delta+\frac{1-\exp \left(-\mathrm{i} e h A_{0}\right)}{h} \\
& \nabla_{\mu}=D_{\mu}+\mathrm{i} e A_{\mu}, \quad \mu \neq 0 .
\end{aligned}
$$

- DD Euler-Lagrange equations:

$$
\mathbf{E}_{\psi}(L)=0, \quad \mathbf{E}_{\psi^{*}}(L)=0, \quad \mathbf{E}_{A^{\mu}}(L)=0
$$

- Gauge-symmetries:

$$
\psi \mapsto \exp (-\mathrm{i} e \lambda), \quad A^{0} \mapsto A^{0}-\Delta \lambda, \quad A^{\mu} \mapsto A^{\mu}+\sum_{\nu=1}^{3} \eta^{\mu \nu} \lambda_{, \nu}(\mu \neq 0)
$$

where the function $\lambda\left(n, x^{1}, x^{2}, x^{3}\right)$ is again arbitrary and real-valued.

- Differential-difference relation of Euler-Lagrange equations:

$$
-\mathrm{i} e \psi \mathbf{E}_{\psi}(L)+\mathrm{i} e \psi^{*} \mathbf{E}_{\psi^{*}}(L)-\Delta^{\dagger}\left(\mathbf{E}_{A^{0}}(L)\right)-\sum_{\mu, \nu=1}^{3} D_{\mu}\left(\eta^{\nu \mu} \mathbf{E}_{A^{\nu}}(L)\right) \equiv 0
$$

where Δ^{\dagger} is adjoint to Δ :

$$
\Delta^{\dagger}=-\frac{\mathrm{id}-S^{-1}}{h}
$$

Summary

- The general prolongation formulation for symmetries of DDEs is proved analytically, that allows us to compute symmetries systematically.
- Continuous symmetries can be used to construct group-invariant solutions of DDEs.
- Noether's two theorems are extended to DD variational problems.
[1] Finite-dimensional variational symmetries and conservation laws
[2] Infinite-dimensional variational symmetries and differential relations of (under-determined) Euler-Lagrange equations
[1.5] An intermediate theorem (infinite-dimensional variational symmetries that are subject to constraints)

Thanks a lot for your attention.

